Skip to main content

Prototype-Based Kernels for Extreme Learning Machines and Radial Basis Function Networks

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10841))

Included in the following conference series:

Abstract

Extreme learning machines or radial basis function networks depends on kernel functions. If the kernel set is too small or not adequate (for the problem/learning data) the learning can be fruitless and generalization capabilities of classifiers do not become rewarding.

The article presents a method of automatic stochastic selection of kernels. Thanks to the proposed scheme of kernel function selection we obtain the proper number of kernels and proper placements of kernels. Evaluation results clearly show that this methodology works very well and is superior to standard extreme learning machine, support vector machine or k nearest neighbours method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: a new learning scheme of feedforward neural networks. In: International Joint Conference on Neural Networks, pp. 985–990. IEEE Press (2004)

    Google Scholar 

  2. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70, 489–501 (2006)

    Article  Google Scholar 

  3. Broomhead, D.S., Lowe, D.: Multivariable functional interpolation and adaptive networks. Complex Syst. 2, 321–355 (1988)

    MathSciNet  MATH  Google Scholar 

  4. Kasun, L.L.C., Zhou, H., Huang, G.B.: Representational learning with ELMS for big data. IEEE Intell. Syst. 28(6), 31–34 (2013)

    Google Scholar 

  5. Jankowski, N., Grochowski, M.: Comparison of instances seletion algorithms I. Algorithms survey. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 598–603. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24844-6_90

    Chapter  Google Scholar 

  6. Grochowski, M., Jankowski, N.: Comparison of instance selection algorithms II. Results and comments. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 580–585. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24844-6_87

    Chapter  Google Scholar 

  7. Wilson, D.R., Martinez, T.R.: Reduction techniques for instance-based learning algorithms. Mach. Learn. 38, 257–286 (2000)

    Article  MATH  Google Scholar 

  8. Merz, C.J., Murphy, P.M.: UCI repository of machine learning databases (1998). http://www.ics.uci.edu/~mlearn/MLRepository.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Jankowski .

Editor information

Editors and Affiliations

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jankowski, N. (2018). Prototype-Based Kernels for Extreme Learning Machines and Radial Basis Function Networks. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2018. Lecture Notes in Computer Science(), vol 10841. Springer, Cham. https://doi.org/10.1007/978-3-319-91253-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91253-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91252-3

  • Online ISBN: 978-3-319-91253-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics