Skip to main content

Averaged Hidden Markov Models in Kinect-Based Rehabilitation System

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10842))

Included in the following conference series:

  • 2020 Accesses

Abstract

In this paper the Averaged Hidden Markov Models (AHMMs) are examined for the upper limb rehabilitation purposes. For the data acquisition the Microsoft Kinect 2.0 sensor is used. The system is intended for low-functioning autistic children whose rehabilitation is often based on sequences of images presenting the subsequent gestures. The number of such training sets is limited and the preparation of a new one is not available for everyone, whereas each child requires the individual therapy. The advantage of the presented system is that new activities models could be easily added.

The conducted experiments provide satisfactory results, especially in the case of single hand rehabilitation and both hands rehabilitation based on asymmetric gestures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Seach, D., Lloyd, M., Preston, M.: Supporting Children with Autism in Mainstreem Schools. The Questions Publishing Company Ltd., Birmingham (2003). ISBN 83-60215-17-0

    Google Scholar 

  2. Barry, A.: Some people think that every person with autism is like Rain Man, or a wizard at maths. Thejournal (2017). http://www.thejournal.ie/autism-aspergers-ireland-3297234-Mar2017/

  3. Autism Awareness - Frequently Asked Questions About Autism. Staffordshire Adults Autistic Society. http://www.saas.uk.com/p/autism-awareness-questions.php

  4. Regenbrecht, H., Hoermann, S., McGregor, G., Dixon, B., Franz, E., Ott, C., Hale, L., Schubert, T., Hoermann, J.: Visual manipulations for motor rehabilitation. Comput. Graph. (Pergamon) 36(7), 819–834 (2012)

    Article  Google Scholar 

  5. Kuttuva, M., Boian, R., Merians, A., Burdea, G., Bouzit, M., Lewis, J., Fensterheim, D.: The rutgers arm, a rehabilitation system in virtual reality: a pilot study. CyberPsychol. Behav. 9(2), 148–152 (2006)

    Article  Google Scholar 

  6. Pastor, I., Hayes, H.A., Bamberg, S.J.M.: A feasibility study of an upper limb rehabilitation system using Kinect and computer games. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1286–1289 (2012)

    Google Scholar 

  7. Chee, K.L., Chen, I.M., Zhiqiang, L., Yeo, S.H.: A low cost wearable wireless sensing system for upper limb home rehabilitation. In: 2010 IEEE Conference on Robotics, Automation and Mechatronics, pp. 1–8 (2010)

    Google Scholar 

  8. Clark, R.A., Pua, Y.H., Fortin, K., Ritchie, C., Webster, K.E., Denehy, L., Bryant, A.L.: Validity of the Microsoft Kinect for assessment of postural control. Gait Posture 36(3), 372–377 (2012)

    Article  Google Scholar 

  9. Scherer, M., Unterbrunner, A., Riess, B., Kafka, P.: Development of a system for supervised training at home with Kinect V2. Procedia Eng. 147, 466–471 (2016)

    Article  Google Scholar 

  10. Chang, Y.J., Chen, S.F., Huang, J.D.: A Kinect-based system for physical rehabilitation: a pilot study for young adults with motor disabilities. Res. Dev. Disabil. 32(6), 2566–2570 (2011)

    Article  Google Scholar 

  11. Kusaka, J., Obo, T., Botzheim, J., Kubota, N.: Joint angle estimation system for rehabilitation evaluation support. In: 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1456–1462 (2014)

    Google Scholar 

  12. Su, Ch.J., Chiang, Ch.Y., Huang, J.Y.: Kinect-enabled home-based rehabilitation system using dynamic time warping and fuzzy logic. Appl. Soft Comput. 22, 652–666 (2014). Elsevier B.V

    Article  Google Scholar 

  13. González-Ortega, D., Díaz-Pernas, F.J., Martínez-Zarzuela, M., Antón-Rodríguez, M.: A Kinect-based system for cognitive rehabilitation exercises monitoring. Comput. Methods Programs Biomed. 113, 620–631 (2014)

    Article  Google Scholar 

  14. Rabiner, L., Juang, B.: An introduction to hidden Markov models. IEEE ASSP Mag. 3, 4–16 (1986)

    Article  Google Scholar 

  15. Postawka, A.: Exercise recognition using averaged hidden Markov models. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017 Part II. LNCS (LNAI), vol. 10246, pp. 137–147. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59060-8_14

    Chapter  Google Scholar 

  16. Postawka, A.: Real-time monitoring system for potentially dangerous activities detection. In: Proceedings of the 22nd International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 1005–1008. IEEE Xplore Digital Library (2017)

    Google Scholar 

  17. Postawka, A., Śliwiński, P.: A Kinect-based support system for children with autism spectrum disorder. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016 Part II. LNCS (LNAI), vol. 9693, pp. 189–199. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39384-1_17

    Chapter  Google Scholar 

Download references

Acknowledgment

This work was supported by the statutory funds of the Faculty of Electronics 0401/0159/17, Wroclaw University of Science and Technology, Wroclaw, Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Postawka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Postawka, A., Śliwiński, P. (2018). Averaged Hidden Markov Models in Kinect-Based Rehabilitation System. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2018. Lecture Notes in Computer Science(), vol 10842. Springer, Cham. https://doi.org/10.1007/978-3-319-91262-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91262-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91261-5

  • Online ISBN: 978-3-319-91262-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics