Abstract
In this paper, we present a new version of the State Transition Algorithm, which allows to automatically determine the number and range of local models that describe the behaviour of a non-linear dynamic object. We used this data as input for genetic programming algorithm in order to create a simple functional model of the non-linear dynamic object which is not computationally demanded and has high accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bartczuk, Ł., Przybył, A., Cpałka, K.: A new approach to nonlinear modelling of dynamic systems based on fuzzy rules. Int. J. Appl. Math. Comput. Sci. 26(3), 603–621 (2016)
Bartczuk, Ł., Dziwiński, P., Red’ko, V.G.: The concept on nonlinear modelling of dynamic objects based on state transition algorithm and genetic programming. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10246, pp. 209–220. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59060-8_20
Bologna, G., Hayashi, Y.: Characterization of symbolic rules embedded in deep DIMLP networks: a challenge to transparency of deep learning. J. Artif. Intell. Soft Comput. Res. 7(4), 265–286 (2017)
Caughey, T.K.: Equivalent linearization techniques. J. Acoust. Soc. Am. 35(11), 1706–1711 (1963)
Chang, O., Constante, P., Gordon, A., Singana, M.: A novel deep neural network that uses space-time features for tracking and recognizing a moving object. J. Artif. Intell. Soft Comput. Res. 7(2), 125–136 (2017)
Chen, C., Luo, C., Jiang, Z.: Elite bases regression: a real-time algorithm for symbolic regression. arXiv preprint arXiv:1704.07313 (2017)
Cpałka, K., Łapa, K., Przybył, A.: A new approach to design of control systems using genetic programming. Inf. Technol. Control 44(4), 433–442 (2015)
Cpałka, K., Rebrova, O., Nowicki, R., Rutkowski, L.: On design of flexible neuro-fuzzy systems for nonlinear modelling. Int. J. Gen. Syst. 42(6), 706–720 (2013)
Dub, M., Stefek, A.: Using PSO method for system identification. In: Březina, T., Jabloński, R. (eds.) Mechatronics 2013, pp. 143–150. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-02294-9_19
Gajdoš, P., et al.: A signal strength fluctuation prediction model based on symbolic regression. In: 2015 38th International Conference on Telecommunications and Signal Processing (TSP), Prague, pp. 1–5 (2015)
Ke, Y., Hagiwara, M.: An English neural network that learns texts, finds hidden knowledge, and answers questions. J. Artif. Intell. Soft Comput. Res. 7(4), 229–242 (2017)
Khan, N.A., Shaikh, A.: A smart amalgamation of spectral neural algorithm for nonlinear lane-emden equations with simulated annealing. J. Artif. Intell. Soft Comput. Res. 7(3), 215–224 (2017)
Korns, M.F.: A baseline symbolic regression algorithm. In: Riolo, R., Vladislavleva, E., Ritchie, M., Moore, J. (eds.) Genetic Programming Theory and Practice X, pp. 117–137. Springer, New York (2012). https://doi.org/10.1007/978-1-4614-6846-2_9
Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection, vol. 1. MIT Press, Cambridge (1992)
Krawiec, K.: Behavioral Program Synthesis with Genetic Programming, vol. 618. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-27565-9
Kubalík, J., Alibekov, E., Žegklitz, J., Babuška, R.: Hybrid single node genetic programming for symbolic regression. In: Nguyen, N.T., Kowalczyk, R., Filipe, J. (eds.) TCCI XXIV. LNCS, vol. 9770, pp. 61–82. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53525-7_4
La Cava, W., Silva, S., Vanneschi, L., Spector, L., Moore, J.: Genetic programming representations for multi-dimensional feature learning in biomedical classification. In: Squillero, G., Sim, K. (eds.) EvoApplications 2017. LNCS, vol. 10199, pp. 158–173. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55849-3_11
Luo, C., Chen, C., Jiang, Z.: A divide and conquer method for symbolic regression. arXiv preprint arXiv:1705.08061 (2017)
Łapa, K., Cpałka, K., Wang, L.: New method for design of fuzzy systems for nonlinear modelling using different criteria of interpretability. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8467, pp. 217–232. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07173-2_20
Łapa, K., Cpałka, K.: On the application of a hybrid genetic-firework algorithm for controllers structure and parameters selection. In: Borzemski, L., Grzech, A., Świątek, J., Wilimowska, Z. (eds.) Information Systems Architecture and Technology: Proceedings of 36th International Conference on Information Systems Architecture and Technology – ISAT 2015 – Part I. AISC, vol. 429, pp. 111–123. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28555-9_10
Łapa, K., Szczypta, J., Saito, T.: Aspects of evolutionary construction of new flexible PID-fuzzy controller. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9692, pp. 450–464. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39378-0_39
Szczypta, J., Łapa, K., Shao, Z.: Aspects of the selection of the structure and parameters of controllers using selected population based algorithms. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8467, pp. 440–454. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07173-2_38
Minemoto, T., Isokawa, T., Nishimura, H., Matsui, N.: Pseudo-orthogonalization of memory patterns for complex-valued and quaternionic associative memories. J. Artif. Intell. Soft Comput. Res. 7(4), 257–264 (2017)
Nelles, O.: Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-662-04323-3
Pennachin, C.L., Looks, M., de Vasconcelos, J.A.: Robust symbolic regression with affine arithmetic. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, pp. 917–924. ACM (2010)
Potter, M.A., De Jong, K.A.: A cooperative coevolutionary approach to function optimization. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994. LNCS, vol. 866, pp. 249–257. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58484-6_269
Prasad, M., Liu, Y.-T., Li, D.-L., Lin, C.-T., Shah, R.R., Kaiwartya, O.P.: A new mechanism for data visualization with TSK-type preprocessed collaborative fuzzy rule based system. J. Artif. Intell. Soft Comput. Res. 7(1), 33–46 (2017)
Rotar, C., Iantovics, L.B.: Directed evolution - a new metaheuristc for optimization. J. Artif. Intell. Soft Comput. Res. 7(3), 183–200 (2017)
Smetka, T., Homoliak, I., Hanacek, P.: On the application of symbolic regression and genetic programming for cryptanalysis of symmetric encryption algorithm. In: 2016 IEEE International Carnahan Conference on Security Technology, Orlando, pp. 1–8 (2016)
Ugalde, H.M.R., et al.: Computational cost improvement of neural network models in black box nonlinear system identification. Neurocomputing 166, 96–108 (2015)
Yang, S., Sato, Y.: Swarm intelligence algorithm based on competitive predators with dynamic virtual teams. J. Artif. Intell. Soft Comput. Res. 7(2), 87–101 (2017)
Zalasiński, M., Cpałka, K.: Novel algorithm for the on-line signature verification using selected discretization points groups. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS (LNAI), vol. 7894, pp. 493–502. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38658-9_44
Zalasiński, M., Cpałka, K., Hayashi, Y.: New fast algorithm for the dynamic signature verification using global features values. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS (LNAI), vol. 9120, pp. 175–188. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19369-4_17
Zalasiński, M., Cpałka, K.: New algorithm for on-line signature verification using characteristic hybrid partitions. In: Wilimowska, Z., Borzemski, L., Grzech, A., Świątek, J. (eds.) Information Systems Architecture and Technology: Proceedings of 36th International Conference on Information Systems Architecture and Technology – ISAT 2015 – Part IV. AISC, vol. 432, pp. 147–157. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28567-2_13
Zalasiński, M., Cpałka, K., Hayashi, Y.: A method for genetic selection of the most characteristic descriptors of the dynamic signature. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10245, pp. 747–760. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59063-9_67
Zhou, X., Yang, C., Gui, W.: Nonlinear system identification and control using state transition algorithm. Appl. Math. Comput. 226, 169–179 (2014)
Zhou, X., Gao, D.Y., Yang, C., Gui, W.: Discrete state transition algorithm for unconstrained integer optimization problems. Neurocomputing 173, 864–874 (2016)
Zhou, X., Yang, C., Gui, W.: Initial version of state transition algorithm. In: 2011 Second International Conference on Digital Manufacturing and Automation (ICDMA), pp. 644–647. IEEE (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Bartczuk, Ł., Dziwiński, P., Cader, A. (2018). Symbolic Regression with the AMSTA+GP in a Non-linear Modelling of Dynamic Objects. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2018. Lecture Notes in Computer Science(), vol 10842. Springer, Cham. https://doi.org/10.1007/978-3-319-91262-2_45
Download citation
DOI: https://doi.org/10.1007/978-3-319-91262-2_45
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-91261-5
Online ISBN: 978-3-319-91262-2
eBook Packages: Computer ScienceComputer Science (R0)