Skip to main content

Developing a Fuzzy Knowledge Base and Filling It with Knowledge Extracted from Various Documents

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2018)

Abstract

The article describes the process of developing a fuzzy knowledge base. The content of the fuzzy knowledge base is the result of extracting knowledge from the set of documents by subject area. Set of documents consists of the wiki-resources, UML-diagrams, documents and source code of projects. Knowledge base based on the graph database Neo4j. An attempt to implement the mechanism of inference by the contents of a graph database was made. This mechanism is used to generate the screen forms of the user interface dynamically. The contexts allow representing the content of the fuzzy knowledge base in space and time. Each space context is assigned a linguistic label, for example, low, middle, high. This label determines the competence of the expert in the given subject area. Time contexts allow storing the history of the knowledge base content changes. It allows returning to a specific state of the contents of the knowledge base.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berant, J., Chou, A., Frostig, R., Liang, P.: Semantic parsing on freebase from question-answer pairs. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1533–1544 (2013)

    Google Scholar 

  2. Bianchini, D., De Antonellis, V., Pernici, B., Plebani, P.: Ontology-based methodology for e-service discovery. Inf. Syst. 31(4), 361–380 (2005)

    Google Scholar 

  3. Bobillo, F., Straccia, U.: FuzzyDL: an expressive fuzzy description logic reasoner. In: Proceedings of the 17th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2008), pp. 923–930. IEEE Computer Society (2008)

    Google Scholar 

  4. Bobillo, F., Straccia, U.: Representing fuzzy ontologies in OWL 2. In: Proceedings of the 19th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2010), pp. 2695–2700. IEEE Press (2010)

    Google Scholar 

  5. Carvalho, N.R., Almeida, J.J., Henriques, P.R., Pereira, M.J.V.: Conclave: ontology-driven measurement of semantic relatedness between source code elements and problem domain concepts. In: Murgante, B., et al. (eds.) ICCSA 2014. LNCS, vol. 8584, pp. 116–131. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09153-2_9

    Chapter  Google Scholar 

  6. Dentler, K., Cornet, R., ten Teije, A., de Keizer, N.: Comparison of reasoners for large ontologies in the OWL 2 EL profile. Semant. Web 2, 71–87 (2011)

    Google Scholar 

  7. Falbo, R.A., Quirino, G.K., Nardi, J.C., Barcellos, M.P., Guizzardi, G., Guarino, N.: An ontology pattern language for service modeling. In: Proceedings of the 31st Annual ACM Symposium on Applied Computing, pp. 321–326 (2016)

    Google Scholar 

  8. Farid, D.M., Al-Mamun, M.A., Manderick, B., Nowe, A.: An adaptive rule-based classifier for mining big biological data. Expert Syst. Appl. 64, 305–316 (2016)

    Article  Google Scholar 

  9. Almeida Ferreira, D., Silva, A.: UML to OWL mapping overview an analysis of the translation process and supporting tools. In: 7th Conference of Portuguese Association of Information Systems, pp. 2536–2549 (2013)

    Google Scholar 

  10. Gao, M., Liu, C.: Extending OWL by fuzzy description logic. In: Proceedings of the 17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2005), pp. 562–567. IEEE Computer Society (2005)

    Google Scholar 

  11. Guarino, N., Musen, M.A.: Ten years of applied ontology. Appl. Ontol. 10(3–4), 169–170 (2015)

    Article  Google Scholar 

  12. Guizzardi, G., Guarino, N., Almeida, J.P.A.: Ontological considerations about the representation of events and endurants in business models. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 20–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4_2

    Chapter  Google Scholar 

  13. Gruber, T.: Ontology. http://tomgruber.org/writing/ontology-in-encyclopedia-of-dbs.pdf. Accessed 10 Jan 2018

  14. Guskov, G., Namestnikov, A., Yarushkina, N.: Approach to the search for similar software projects based on the UML ontology. In: Abraham, A., Kovalev, S., Tarassov, V., Snasel, V., Vasileva, M., Sukhanov, A. (eds.) IITI 2017. AISC, vol. 680, pp. 3–10. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-68324-9_1

    Chapter  Google Scholar 

  15. Hattori, S., Takama, Y.: Recommender system employing personal-value-based user model. J. Adv. Comput. Intell. Intell. Inform. (JACIII) 18(2), 157–165 (2014)

    Article  Google Scholar 

  16. Koukias, A., Nadoveza, D., Kiritsis, D.: An ontology-based approach for modelling technical documentation towards ensuring asset optimisation. Int. J. Prod. Lifecycle Manag. 8(1), 24–45 (2015)

    Article  Google Scholar 

  17. Neo4j. https://neo4j.com/product. Accessed 10 Jan 2018

  18. Ltifi, H., Kolski, C., Ayed, M.B., Alimi, A.M.: A human-centred design approach for developing dynamic decision support system based on knowledge discovery in databases. J. Decis. Syst. 22, 69–96 (2013)

    Article  Google Scholar 

  19. Pellet Framework. https://github.com/stardog-union/pellet. Accessed 10 Jan 2018

  20. Rajpathak, D., Chougule, R., Bandyopadhyay, P.: A domain-specific decision support system for knowledge discovery using association and text mining. Knowl. Inf. Syst. 31, 405–432 (2012)

    Article  Google Scholar 

  21. Renu, R.S., Mocko, G., Koneru, A.: Use of big data and knowledge discovery to create data backbones for decision support systems. Procedia Comput. Sci. 20, 446–453 (2013)

    Article  Google Scholar 

  22. Rubiolo, M., Caliusco, M.L., Stegmayer, G., Coronel, M., Fabrizi, M.G.: Knowledge discovery through ontology matching: an approach based on an artificial neural network model. Inf. Sci. 194, 107–119 (2012)

    Article  Google Scholar 

  23. Ruy, F.B., Reginato, C.C., Santos, V.A., Falbo, R.A., Guizzardi, G.: Ontology engineering by combining ontology patterns. In: Johannesson, P., Lee, M.L., Liddle, S.W., Opdahl, A.L., López, Ó.P. (eds.) ER 2015. LNCS, vol. 9381, pp. 173–186. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25264-3_13

    Chapter  Google Scholar 

  24. Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge unifying WordNet and Wikipedia. In: Proceedings of the 16th International Conference on World Wide Web, pp. 697–706 (2007)

    Google Scholar 

  25. SWRL: A Semantic Web Rule Language Combining OWL and RuleML. https://www.w3.org/Submission/SWRL. Accessed 20 Jan 2018

  26. Wongthongtham, P., Pakdeetrakulwong, U., Marzooq, S.H.: Ontology annotation for software engineering project management in multisite distributed software development environments. In: Mahmood, Z. (ed.) Software Project Management for Distributed Computing, pp. 315–343. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-54325-3_13

    Google Scholar 

  27. Yarushkina, N., Filippov, A., Moshkin, V.: Development of the unified technological platform for constructing the domain knowledge base through the context analysis. In: Kravets, A., Shcherbakov, M., Kultsova, M., Groumpos, P. (eds.) CIT&DS 2017. CCIS, vol. 754, pp. 62–72. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-65551-2_5

    Google Scholar 

  28. Zarubin, A., Koval, A., Filippov, A., Moshkin, V.: Application of syntagmatic patterns to evaluate answers to open-ended questions. In: Kravets, A., Shcherbakov, M., Kultsova, M., Groumpos, P. (eds.) CIT&DS 2017, vol. 754, pp. 150–162. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-65551-2_11

    Google Scholar 

  29. Zedlitz, J., Jörke, J., Luttenberger, N.: From UML to OWL 2. In: Lukose, D., Ahmad, A.R., Suliman, A. (eds.) Proceedings of Knowledge Technology. CCIS, vol. 295, pp. 154–163. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32826-8_16

    Google Scholar 

Download references

Acknowledgments

The study was supported by the Ministry of Education and Science of the Russian Federation in the framework of the project No. 2.1182.2017/4.6. Development of methods and means for automation of production and technological preparation of aggregate-assembly aircraft production in the conditions of a multi-product production program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksey Filippov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yarushkina, N., Moshkin, V., Filippov, A., Guskov, G. (2018). Developing a Fuzzy Knowledge Base and Filling It with Knowledge Extracted from Various Documents. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2018. Lecture Notes in Computer Science(), vol 10842. Springer, Cham. https://doi.org/10.1007/978-3-319-91262-2_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91262-2_70

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91261-5

  • Online ISBN: 978-3-319-91262-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics