Abstract
The article describes the process of developing a fuzzy knowledge base. The content of the fuzzy knowledge base is the result of extracting knowledge from the set of documents by subject area. Set of documents consists of the wiki-resources, UML-diagrams, documents and source code of projects. Knowledge base based on the graph database Neo4j. An attempt to implement the mechanism of inference by the contents of a graph database was made. This mechanism is used to generate the screen forms of the user interface dynamically. The contexts allow representing the content of the fuzzy knowledge base in space and time. Each space context is assigned a linguistic label, for example, low, middle, high. This label determines the competence of the expert in the given subject area. Time contexts allow storing the history of the knowledge base content changes. It allows returning to a specific state of the contents of the knowledge base.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Berant, J., Chou, A., Frostig, R., Liang, P.: Semantic parsing on freebase from question-answer pairs. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1533–1544 (2013)
Bianchini, D., De Antonellis, V., Pernici, B., Plebani, P.: Ontology-based methodology for e-service discovery. Inf. Syst. 31(4), 361–380 (2005)
Bobillo, F., Straccia, U.: FuzzyDL: an expressive fuzzy description logic reasoner. In: Proceedings of the 17th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2008), pp. 923–930. IEEE Computer Society (2008)
Bobillo, F., Straccia, U.: Representing fuzzy ontologies in OWL 2. In: Proceedings of the 19th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2010), pp. 2695–2700. IEEE Press (2010)
Carvalho, N.R., Almeida, J.J., Henriques, P.R., Pereira, M.J.V.: Conclave: ontology-driven measurement of semantic relatedness between source code elements and problem domain concepts. In: Murgante, B., et al. (eds.) ICCSA 2014. LNCS, vol. 8584, pp. 116–131. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09153-2_9
Dentler, K., Cornet, R., ten Teije, A., de Keizer, N.: Comparison of reasoners for large ontologies in the OWL 2 EL profile. Semant. Web 2, 71–87 (2011)
Falbo, R.A., Quirino, G.K., Nardi, J.C., Barcellos, M.P., Guizzardi, G., Guarino, N.: An ontology pattern language for service modeling. In: Proceedings of the 31st Annual ACM Symposium on Applied Computing, pp. 321–326 (2016)
Farid, D.M., Al-Mamun, M.A., Manderick, B., Nowe, A.: An adaptive rule-based classifier for mining big biological data. Expert Syst. Appl. 64, 305–316 (2016)
Almeida Ferreira, D., Silva, A.: UML to OWL mapping overview an analysis of the translation process and supporting tools. In: 7th Conference of Portuguese Association of Information Systems, pp. 2536–2549 (2013)
Gao, M., Liu, C.: Extending OWL by fuzzy description logic. In: Proceedings of the 17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2005), pp. 562–567. IEEE Computer Society (2005)
Guarino, N., Musen, M.A.: Ten years of applied ontology. Appl. Ontol. 10(3–4), 169–170 (2015)
Guizzardi, G., Guarino, N., Almeida, J.P.A.: Ontological considerations about the representation of events and endurants in business models. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 20–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4_2
Gruber, T.: Ontology. http://tomgruber.org/writing/ontology-in-encyclopedia-of-dbs.pdf. Accessed 10 Jan 2018
Guskov, G., Namestnikov, A., Yarushkina, N.: Approach to the search for similar software projects based on the UML ontology. In: Abraham, A., Kovalev, S., Tarassov, V., Snasel, V., Vasileva, M., Sukhanov, A. (eds.) IITI 2017. AISC, vol. 680, pp. 3–10. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-68324-9_1
Hattori, S., Takama, Y.: Recommender system employing personal-value-based user model. J. Adv. Comput. Intell. Intell. Inform. (JACIII) 18(2), 157–165 (2014)
Koukias, A., Nadoveza, D., Kiritsis, D.: An ontology-based approach for modelling technical documentation towards ensuring asset optimisation. Int. J. Prod. Lifecycle Manag. 8(1), 24–45 (2015)
Neo4j. https://neo4j.com/product. Accessed 10 Jan 2018
Ltifi, H., Kolski, C., Ayed, M.B., Alimi, A.M.: A human-centred design approach for developing dynamic decision support system based on knowledge discovery in databases. J. Decis. Syst. 22, 69–96 (2013)
Pellet Framework. https://github.com/stardog-union/pellet. Accessed 10 Jan 2018
Rajpathak, D., Chougule, R., Bandyopadhyay, P.: A domain-specific decision support system for knowledge discovery using association and text mining. Knowl. Inf. Syst. 31, 405–432 (2012)
Renu, R.S., Mocko, G., Koneru, A.: Use of big data and knowledge discovery to create data backbones for decision support systems. Procedia Comput. Sci. 20, 446–453 (2013)
Rubiolo, M., Caliusco, M.L., Stegmayer, G., Coronel, M., Fabrizi, M.G.: Knowledge discovery through ontology matching: an approach based on an artificial neural network model. Inf. Sci. 194, 107–119 (2012)
Ruy, F.B., Reginato, C.C., Santos, V.A., Falbo, R.A., Guizzardi, G.: Ontology engineering by combining ontology patterns. In: Johannesson, P., Lee, M.L., Liddle, S.W., Opdahl, A.L., López, Ó.P. (eds.) ER 2015. LNCS, vol. 9381, pp. 173–186. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25264-3_13
Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge unifying WordNet and Wikipedia. In: Proceedings of the 16th International Conference on World Wide Web, pp. 697–706 (2007)
SWRL: A Semantic Web Rule Language Combining OWL and RuleML. https://www.w3.org/Submission/SWRL. Accessed 20 Jan 2018
Wongthongtham, P., Pakdeetrakulwong, U., Marzooq, S.H.: Ontology annotation for software engineering project management in multisite distributed software development environments. In: Mahmood, Z. (ed.) Software Project Management for Distributed Computing, pp. 315–343. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-54325-3_13
Yarushkina, N., Filippov, A., Moshkin, V.: Development of the unified technological platform for constructing the domain knowledge base through the context analysis. In: Kravets, A., Shcherbakov, M., Kultsova, M., Groumpos, P. (eds.) CIT&DS 2017. CCIS, vol. 754, pp. 62–72. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-65551-2_5
Zarubin, A., Koval, A., Filippov, A., Moshkin, V.: Application of syntagmatic patterns to evaluate answers to open-ended questions. In: Kravets, A., Shcherbakov, M., Kultsova, M., Groumpos, P. (eds.) CIT&DS 2017, vol. 754, pp. 150–162. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-65551-2_11
Zedlitz, J., Jörke, J., Luttenberger, N.: From UML to OWL 2. In: Lukose, D., Ahmad, A.R., Suliman, A. (eds.) Proceedings of Knowledge Technology. CCIS, vol. 295, pp. 154–163. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32826-8_16
Acknowledgments
The study was supported by the Ministry of Education and Science of the Russian Federation in the framework of the project No. 2.1182.2017/4.6. Development of methods and means for automation of production and technological preparation of aggregate-assembly aircraft production in the conditions of a multi-product production program.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Yarushkina, N., Moshkin, V., Filippov, A., Guskov, G. (2018). Developing a Fuzzy Knowledge Base and Filling It with Knowledge Extracted from Various Documents. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2018. Lecture Notes in Computer Science(), vol 10842. Springer, Cham. https://doi.org/10.1007/978-3-319-91262-2_70
Download citation
DOI: https://doi.org/10.1007/978-3-319-91262-2_70
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-91261-5
Online ISBN: 978-3-319-91262-2
eBook Packages: Computer ScienceComputer Science (R0)