Skip to main content

Self-adaptive Model Checking, the Next Step?

  • Conference paper
  • First Online:
Application and Theory of Petri Nets and Concurrency (PETRI NETS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10877))

Abstract

Model checking is becoming a popular verification method that still suffers from combinatorial explosion when used on large industrial systems. Currently, experts can, in some cases, overcome this complexity by selecting appropriate modeling and verification techniques, as well as an adapted representation of the system. Unfortunately, this cannot yet be done automatically, thus hindering the use of model checking in industry.

The objective of this paper is to sketch a way to tackle this problem by introducing self-adaptive model checking. This is a long term goal that could lead the community to elaborate a new generation of model checkers able to successfully push forwards the scale of the systems they can deal with.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See http://mcc.lip6.fr.

  2. 2.

    Orange or gray in B&W.

  3. 3.

    Dark blue or black in B&W.

  4. 4.

    NUPN means “Nested-Unit Petri Nets” and is additional information providing some structure to the specification [16]. Some models in the benchmark embed such information.

References

  1. Baarir, S., Duret-Lutz, A.: Sat-based minimization of deterministic \(\omega \)-automata. In: 20th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning, LPAR, pp. 79–87 (2015)

    Chapter  Google Scholar 

  2. Ben Salem, A.E., Duret-Lutz, A., Kordon, F., Thierry-Mieg, Y.: Symbolic model checking of stutter-invariant properties using generalized testing automata. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 440–454. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_38

    Chapter  Google Scholar 

  3. Berthomieux, B., Bodeveix, J.P., Filali, M., Lang, F., Le Botland, D., Vernadat, F.: The syntax and semantic of fiacre. Technical report 7264, CNRS-LAAS (2007)

    Google Scholar 

  4. Bloem, R., Ravi, K., Somenzi, F.: Efficient decision procedures for model checking of linear time logic properties. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp. 222–235. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48683-6_21

    Chapter  Google Scholar 

  5. Broy, M., Jonsson, B., Katoen, J., Leucker, M., Pretschner, A. (eds.): Model-Based Testing of Reactive Systems. LNCS, vol. 3472. Springer, Heidelberg (2005). https://doi.org/10.1007/b137241

    Book  MATH  Google Scholar 

  6. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Congress on Logic, Method, and Philosophy of Science, pp. 1–12. Stanford University (1960, 1962)

    Google Scholar 

  7. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model checking: 10\(^{\hat{}}\)20 states and beyond. Inf. Comput. 98(2), 142–170 (1992)

    Article  MathSciNet  Google Scholar 

  8. Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: Stochastic well-formed colored nets and symmetric modeling applications. IEEE Trans. Comput. 42(11), 1343–1360 (1993)

    Article  Google Scholar 

  9. Clarke, E.M., Fehnker, A., Han, Z., Krogh, B.H., Ouaknine, J., Stursberg, O., Theobald, M.: Abstraction and counterexample-guided refinement in model checking of hybrid systems. Int. J. Found. Comput. Sci. 14(4), 583–604 (2003)

    Article  MathSciNet  Google Scholar 

  10. Clarke, E.M., Jha, S., Marrero, W.R.: Efficient verification of security protocols using partial-order reductions. STTT 4(2), 173–188 (2003)

    Article  Google Scholar 

  11. Colange, M., Baarir, S., Kordon, F., Thierry-Mieg, Y.: Towards distributed software model-checking using decision diagrams. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 830–845. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_58

    Chapter  Google Scholar 

  12. Duflot, M., Kwiatkowska, M.Z., Norman, G., Parker, D.: A formal analysis of bluetooth device discovery. STTT 8(6), 621–632 (2006)

    Article  Google Scholar 

  13. Duret-Lutz, A., Klai, K., Poitrenaud, D., Thierry-Mieg, Y.: Self-loop aggregation product—a new hybrid approach to on-the-fly LTL model checking. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 336–350. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24372-1_24

    Chapter  Google Scholar 

  14. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.: Spot 2.0—a framework for LTL and \(\omega \)-automata manipulation. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122–129. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46520-3_8

    Chapter  Google Scholar 

  15. Evangelista, S., Haddad, S., Pradat-Peyre, J.: Syntactical colored petri nets reductions. In: Automated Technology for Verification and Analysis, Third International Symposium, ATVA. pp. 202–216 (2005)

    Chapter  Google Scholar 

  16. Garavel, H.: Nested-unit petri nets: a structural means to increase efficiency and scalability of verification on elementary nets. In: Devillers, R., Valmari, A. (eds.) PETRI NETS 2015. LNCS, vol. 9115, pp. 179–199. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19488-2_9

    Chapter  MATH  Google Scholar 

  17. Geldenhuys, J., Hansen, H.: Larger automata and less work for LTL model checking. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 53–70. Springer, Heidelberg (2006). https://doi.org/10.1007/11691617_4

    Chapter  MATH  Google Scholar 

  18. Gerth, R.: Model checking if your life depends on it: a view from intel’s trenches. In: Dwyer, M. (ed.) SPIN 2001. LNCS, vol. 2057, p. 15. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45139-0_2

    Chapter  MATH  Google Scholar 

  19. Groce, A., Peled, D., Yannakakis, M.: Adaptive model checking. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 357–370. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46002-0_25

    Chapter  Google Scholar 

  20. Hamez, A., Thierry-Mieg, Y., Kordon, F.: Building efficient model checkers using hierarchical set decision diagrams and automatic saturation. Fundam. Inf. 94(3–4), 413–437 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Hillah, L., Kindler, E., Kordon, F., Petrucci, L., Trèves, N.: A primer on the Petri Net Markup Language and ISO/IEC 15909–2. In: Petri Net Newsletter (originally presented at the 10th International workshop on Practical Use of Colored Petri Nets and the CPN Tools - CPN 2009), vol. 76, pp. 9–28 (2009)

    Google Scholar 

  22. Holzmann, G.: The Spin Model Checker: Primer and Reference Manual, 1st edn. Addison-Wesley Professional, Boston (2003)

    Google Scholar 

  23. Holzmann, G.J.: Mars code. Commun. ACM 57(2), 64–73 (2014)

    Article  Google Scholar 

  24. Hugues, J., Thierry-Mieg, Y., Kordon, F., Pautet, L., Baarir, S., Vergnaud, T.: On the formal verification of middleware behavioral properties. In: 9th International Workshop on Formal Methods for Industrial Critical Systems (FMICS 2004), pp. 139–157. Elsevier (2004)

    Article  Google Scholar 

  25. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin: high-performance language-independent model checking. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 692–707. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_61

    Chapter  Google Scholar 

  26. Klai, K., Poitrenaud, D.: MC-SOG: an LTL model checker based on symbolic observation graphs. In: van Hee, K.M., Valk, R. (eds.) PETRI NETS 2008. LNCS, vol. 5062, pp. 288–306. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68746-7_20

    Chapter  Google Scholar 

  27. Kordon, F., Leuschel, M., van de Pol, J., Thierry-Mieg, Y.: Software architecture of modern model checkers. In: High Assurance System: Methods, Languages, and Tools. LNCS 10000 (2018, to appear)

    Google Scholar 

  28. Kordon, F., Garavel, H., Hillah, L.M., Paviot-Adet, E., Jezequel, L., Rodríguez, C., Hulin-Hubard, F.: MCC’2015 – the fifth model checking contest. In: Koutny, M., Desel, J., Kleijn, J. (eds.) Transactions on Petri Nets and Other Models of Concurrency XI. LNCS, vol. 9930, pp. 262–273. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53401-4_12

    Chapter  Google Scholar 

  29. McMillan, K.L.: Using unfoldings to avoid the state explosion problem in the verification of asynchronous circuits. In: von Bochmann, G., Probst, D.K. (eds.) CAV 1992. LNCS, vol. 663, pp. 164–177. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56496-9_14

    Chapter  Google Scholar 

  30. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees. Trans. AMS 141, 1–35 (1969)

    MathSciNet  MATH  Google Scholar 

  31. Renault, E., Duret-Lutz, A., Kordon, F., Poitrenaud, D.: Strength-based decomposition of the property Büchi automaton for faster model checking. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 580–593. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7_42

    Chapter  MATH  Google Scholar 

  32. Schröter, C., Schwoon, S., Esparza, J.: The model-checking kit. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 463–472. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44919-1_29

    Chapter  Google Scholar 

  33. Schwarick, M., Heiner, M.: CSL model checking of biochemical networks with interval decision diagrams. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 296–312. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03845-7_20

    Chapter  Google Scholar 

  34. Streett, R.S.: Propositional dynamic logic of looping and converse is elementarily decidable. Inf. Control 54(1/2), 121–141 (1982)

    Article  MathSciNet  Google Scholar 

  35. Thierry-Mieg, Y.: Symbolic model-checking using ITS-tools. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 231–237. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_20

    Chapter  Google Scholar 

  36. Wang, F., Schmidt, K., Yu, F., Huang, G., Wang, B.: BDD-based safety-analysis of concurrent software with pointer data structures using graph automorphism symmetry reduction. IEEE Trans. Softw. Eng. 30(6), 403–417 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrice Kordon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kordon, F., Thierry-Mieg, Y. (2018). Self-adaptive Model Checking, the Next Step?. In: Khomenko, V., Roux, O. (eds) Application and Theory of Petri Nets and Concurrency. PETRI NETS 2018. Lecture Notes in Computer Science(), vol 10877. Springer, Cham. https://doi.org/10.1007/978-3-319-91268-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91268-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91267-7

  • Online ISBN: 978-3-319-91268-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics