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Abstract. A knot diagram looks like a two-dimensional drawing of a
knotted rubberband. Proving that a given knot diagram can be untangled
(that is, is a trivial knot, called an unknot) is one of the most famous
problems of knot theory. For a small knot diagram, one can try to find
a sequence of untangling moves explicitly, but for a larger knot diagram
producing such a proof is difficult, and the produced proofs are hard
to inspect and understand. Advanced approaches use algebra, with an
advantage that since the proofs are algebraic, a computer can be used
to produce the proofs, and, therefore, a proof can be produced even
for large knot diagrams. However, such produced proofs are not easy to
read and, for larger diagrams, not likely to be human readable at all.
We propose a new approach combining advantages of these: the proofs
are algebraic and can be produced by a computer, whilst each part of
the proof can be represented as a reasonably small knot-like diagram
(a new representation as a labeled tangle diagram), which can be easily
inspected by a human for the purposes of checking the proof and finding
out interesting facts about the knot diagram.

1 Introduction

A knot diagram looks like a two-dimensional drawing of a knotted rubberband. In
the simplest case, consider a knot diagram (or a rubberband) without crossings
(e.g. see the lower right diagram in Figure 1); this knot diagram is known as the
trivial knot or unknot. For this and other basic concepts of knot theory, see any
of the textbooks [1, 12, 9, 10, 13, 16]. A knot diagram which looks knotted may be
really knotted, or it may be then the unknot in disguise, with the diagram (think
rubberband) being able to be untangled by gently pulling some of its parts in
some order, until the diagram does not have any crossings (at which point it is
obvious that it is a trivial knot). An example of a sequence of such untangling
steps is shown in Figure 1; intuitively these correspond to moving a rubberband
in the 3-dimensional Euclidean space without cutting it.

The problem of deciding whether a given knot diagram can be untangled
(that is, is a trivial knot) is one of the most famous problems of knot theory. It



Fig. 1. An example of a step-by-step untangling of a diagram of a trivial knot.

is an interesting problem, having attracted diverse approaches from a number of
different areas of mathematics, whilst having an immediate aesthetic appeal.

The immediate, naive approach to the problem is trying to find a sequence of
untangling moves explicitly; then the process of untangling can be represented
as a sequence of diagrams (as in Figure 1). For small knot diagrams this can be a
preferred method, but for larger knot diagrams producing such proofs is difficult
[2], and the produced proof becomes hard to inspect (as you can see, even the
relatively small proof in Figure 1 has some steps that are not so easy to follow).

A number of more advanced approaches are based on using algebra. Some of
these approaches are based on denoting each arc (that is, a continuous unbroken
line segment of the diagram) by a letter, as shown in the example in Figure 2,
and then proving that all these letters are equal to each other in a certain
algebra. Some of the authors’ previous research concentrated on such methods
of untangling [4, 5, 11], and this paper presents a new twist in this research. (For
completeness, note that not all algebraic approaches to untangling are based on
labelling arcs; see [3], for example.)
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Fig. 2. A labelled knot diagram
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Fig. 3. A labelled tangle diagram

The advantage of such an approach is that since proofs are purely algebraic,
a computer can be used to produce the proofs, and, therefore, a proof can be



produced even for a large knot diagram. However, the produced proof, consisting
of long chains of abstract equalities, is not easy to read and, for larger diagrams,
is not human readable at all. For example, here is a proof showing that the
diagram in Figure 2 is a trivial knot (adapted from [19]):

“bc = ca = gc, hence, b = g; bf = fc = df , hence, b = d; gg = gb = gd = eg,
hence, g = e; dg = fd = fb = fg, hence, d = f ; cf = fd = dg = db = dd = df ,
hence, c = d; ab = ad = ac = cb, hence, a = c.”.

In this paper, we propose a new approach, which combines the advantages
of the above approaches. Our proofs are produced algebraically (and can be
produced by a computer), as in the example above, but they are produced in
such a way that the proof of the equality of each two letters (say, a and b) can be
represented as a reasonably small knot-like diagram (with two free ends, labelled
a and b), which can be easily inspected by a human for the purposes of checking
the proof and finding out interesting facts about the knot diagram. For instance,
instead of reading the proofs of b = g, b = d and g = e above, one can inspect
the diagram in Figure 3; we shall revisit this example in Section 4.

The following sections explain how such labelled tangle diagrams are related
to the knot diagram, and why the existence of certain labelled tangle diagrams
proves that a knot diagram represents the trivial knot.

Since this research involves considering many types of diagrams, it may be
useful to highlight how different diagrams are used for different purposes in this
paper.

– There are knot diagrams, such as in Figure 2.
– There are tangle diagrams with two free ends, such as in Figure 3; the ex-

istence of certain tangle diagrams with two free ends (such as, for example,
in Figures 11–16) proves that the knot diagram is the trivial knot.

– We have proved Theorem 3 which establishes a connection between knot
diagrams and tangle diagrams by considering certain more complicated di-
agrams, which look like tangle diagrams with one special strand which we
call a virtual ruler; see Section 3.

– In practice, finding suitable tangle diagrams with two free ends involves
considering other tangle diagrams (not only with two free ends), as described
in Sections 5 and 6.

2 Groups induced by a knot diagram

This section presents definitions, together with an expanded and corrected ex-
position of Fact 1 and the subsequent discussion in [11].

By an arc we mean a continuous line in a knot diagram from one under-
crossing to another undercrossing. For example, consider the knot diagram in
Figure 2; it has seven arcs, denoted by a, b, . . . , g.

For a given knot diagram D, the π-orbifold group OD of the knot is a group
generated by the arc letters with the following relations. For each arc x of the
diagram D, introduce a relation x2 = 1. At every crossing where x and z are the
two arcs terminating at the crossing and y is the arc passing over the crossing,



introduce a defining relation xy = yz (or, equivalently, yx = zy, or yxy = z, or
yzy = x). Let A denote the generating set of OD (i.e. the set of labels of the arcs
of D), and consider the natural homomorphism from the free semigroup A+ onto
OD. It is easy to see that, for each element g of OD, either only words of an odd
length are mapped to g or only words of an even length are mapped to g under
the homomorphism. Accordingly, let us say that g is an element of odd (even)
length in the former (latter) case. A subgroup of OD consisting of the set of all
elements of even length is called the fundamental group of the 2-fold branched
cyclic cover space of a knot [15, 20]; we shorten this name to the two-fold group
of a knot, and denote the group by TD.

Another well-known algebraic construction associated with a knot diagram
d is its knot group, which we denote by GD. This is historically the first and
the best known construction (see, for example, Section 6.11 in [6] or Chapter 11
in [10]). We do not need to define GD here, but we note that OD is a factor-
group of GD produced from GD by introducing the additional relations x2 = 1
for each arc x.

Trivial knots can be characterised via certain algebraic constructions associ-
ated with them.

Theorem 1. The following are equivalent:

– A knot diagram D is a diagram of the trivial knot.
– The two-fold group TD is trivial [15,?]. In other words, for each pair of arc

labels x and y, we have x = y in the two-fold group of the knot.
– The group GD is infinite cyclic [1]. In other words, for each pair of arc labels
x and y, we have x = y in the knot group.

Since the π-orbifold group OD is ‘sandwiched’ between the two-fold group of the
knot TD and the group of the knot GD, the following conclusion can be made
concerning π-orbifold groups.

Corollary 1. A knot diagram D is a diagram of the trivial knot if and only if
its π-orbifold group OD is the two-element cyclic group. In other words, D is a
diagram of the trivial knot if and only if for each pair of arc labels x and y, we
have x = y in OD.

The rest of the theoretical discussion in the paper concentrates on discussing
how one can prove, for any two given arc labels x and y, that x = y in the
π-orbifold group of the knot.

3 Reading Tangles

Tangle diagrams have been used for untangling knot diagrams; see, for example,
[8]; in this paper we introduce a completely new way of using tangles to untangle
knot diagrams. In this section, we develop the theory of reading tangles. This
takes the form of flexible rulers, called virtual rulers, each of which gives rise to a
word in the π-orbifold group. Then, the passing of such a ruler through a tangle



diagram corresponds to a proof in the group. We first provide some examples to
illustrate the core idea, before moving into the theoretical developments ensuring
that the intuitive use of these tangle diagrams and virtual rulers is well-founded.

Figure 4 shows an example of passing a virtual ruler (the line across the
tangle, from left to right, with meeting points of the ruler and the diagram
accentuated with dots) over a tangle diagram to produce a proof. The tangle
diagram has its arcs labeled, and the labels on the ruler concatenate the labels
encountered as it passes through the tangle, starting with 1 on the left hand
side of the ruler playing the role of the empty word. The tangle diagrams in all
six cases in Figure 4 are the same and the rulers differ in a specific way (details
to follow). We obtain a proof consisting of equalities of the words from each of
the six cases. In this example, reading the words induced by the rulers starting
in the top row from left to right, followed by the bottom row gives rise to the
proof: a = cca = cbc = cdb = ccd = d.

Fig. 4. An example of passing a virtual ruler over a tangle diagram to produce a proof.
Reading the words induced by the rulers starting in the top row from left to right,
followed by the bottom row gives rise to the proof: a = cca = cbc = cdb = ccd = d.



Later on, we will see that each step between diagrams can be viewed precisely
as a certain type of move, called a TR2 or a TR3 move (these will be defined
soon), and we will use this characterization to ensure the equalities we claim
in the proof are correct. Alternate choices of application of the TR2 and TR3

moves can give rise to different proofs, as demonstrated in Figure 5. The first
four diagrams and rulers in the sequences are the same in Figures 4 and 5, but
the fifth is different, effectively by applying a different TR3 move to the fourth
diagram in the sequence. From Figure 5, we obtain the slightly different proof:
a = cca = cbc = cdb = dbb = d.

Fig. 5. A different proof obtained by applying a different TR3 move to the 4th diagram
in the sequence in Figure 4. We obtain the proof: a = cca = cbc = cdb = dbb = d.

3.1 The theory of reading tangles

A tangle diagram T is like a knot diagram, except that its arcs may have free ends
(commonly arranged at the top and bottom of a bounding box of the diagram –



this is not essential, as can be seen from some examples in the rest of the paper,
but we adopt this convention here to make the exposition more straightforward).
The arcs are labeled by elements of the group. For our construction, we require
that each labeled crossing matches exactly with one of the labeled crossings of
the original knot diagram.

Figure 6 shows an example of a tangle diagram with one free end at the top
and one at the bottom. This is the tangle considered in Figures 4 and 5. In this
paper, we only need to consider tangles with one free end at top and bottom, but
the concept generalizes, as does the theory of reading tangles developed here.

Fig. 6. The tangle diagram which is used in all cases of the Figures 4 and 5 – the
additional part of those figures that changed was the virtual ruler.

Definition 1. A virtual ruler v for T is an additional strand with one free
end at the left and one at the right of T , which only meets T transversely at
points that are not classical crossings.

This means that the ruler can be viewed as a line drawn through a tangle
diagram from the left to the right of the tangle, which crosses the tangle diagram
properly (so no tangential meetings or concurrency of line segments) and does
not pass through any already existing classical crossing of the tangle diagram.
The meeting points between tangle diagram and the ruler are clearly indicated
via blobs (which may be called virtual crossings).

Definition 2. Let T be tangle diagram and v a virtual ruler v for T . Then
the arcs of v have labels in the group induced from T by assigning the identity
(denoted by 1 here) to the leftmost free arc of v, and concatenating the labels
on the arcs of T that v crosses as one traverses the virtual ruler from left to
right. The word w obtained as the label on the rightmost free end of v is the
interpretation of v in T .



The arcs of v end at the blobs. Here, since we are considering a group we
made use of the identity as the leftmost label of the ruler (whilst the empty word
ε can be used here for the more general setting).

In Figure 7, we present moves of virtual rulers over tangles (the definition
follows). These will be precisely the moves of virtual rulers and tangles that
encapsulate equivalence (see Theorem 2).

Fig. 7. The TR-moves, indicating permissible moves of a virtual ruler over a tangle.

Definition 3. Let T be tangle diagram and v a virtual ruler for T . Define two
moves of a virtual ruler over T , denoted TR2 and TR3, as shown in Figure 7. For
TR2, the w1 and w2 are words on the labels of the arcs of the virtual ruler shown;
the case in which either (or both) of w1 and w2 are empty is also permitted (if
the left or right virtual crossing shown, respectively, is not present). For TR3,
the analogous move with a different classical crossing, shown in Figure 8 is also
permitted.

Theorem 2. Given any two virtual rulers v1 and v2 for T , the interpretation
of v1 in T and the interpretation of v2 in T are equal in OD.

Proof. In the same way that one can pass a strand of a knot diagram over the rest
of the diagram by repeated application of Reidemeister moves R2 and R3, one
can pass a virtual ruler over T by the repeated application of the TR2 and TR3

moves. We see that each of these moves induces an equality in OD by precisely
the application of one of the defining relations. For TR2, it is the application
of the relation a2 = 1, with a a generator. For TR3 it is the relation ab = ca,
obtained from the labeled crossing in T , which by construction occurred in OD
(see the matching crossing which is the second on the left in Figure 10).



Fig. 8. An analogous T3 move (we do not distinguish in naming convention).

Lemma 1. The rules TR2 and TR3 are sufficient to pass a virtual ruler over a
tangle.

Proof. Consider the stepwise process of moving a virtual ruler over a fixed tangle
by moving segments down the tangle from the top to the bottom. By segment
here we refer to a connected part of the virtual ruler, not necessarily starting or
ending at virtual crossings, which contains at most two virtual crossings. Any
such segment considered contains 0, 1 or 2 virtual crossings. In the case of 0
virtual crossings, only TR2 can be applied (see top row of Figure 9). In the
case of 2 virtual crossings, either we are in the case where TR3 can be directly
applied (if there is a ∆ with the two virtual crossings and a classical crossing at
the corners and there are no other strands meeting the ∆, as in the middle row
of Figure 9), or not. If not, then consider a segment containing only one of the
strands meeting the virtual ruler at one of these two virtual crossings, reducing
to the case of 1 virtual crossing. In this case, apply a nearby TR2 move, which
enables the subsequent application of a TR3-move (see bottom row of Figure 9).
Any TR3-move applied reduces the number of classical crossings remaining to
pass over. The process terminates.

Recall that a proof in OD is a sequence of equalities of elements of OD such
that each consecutive element differs by the application of one of the relators in
OD.

Proposition 1. Let T be a tangle diagram, and let v1, . . . , vk be a sequence of
virtual rulers for T , with interpretations i(v1), . . . , i(vk). Then:

1. The sequence of equalities i(v1) = . . . = i(vk) holds in OD.

2. If, in addition, for each j ∈ {1, . . . , k − 1} we have that vj differs from
vj+1 by a TR move (either TR2 or TR3), then the sequence of equalities
i(v1) = . . . = i(vk) is a proof in OD.

Proof. The first part follows from Theorem 2, whilst the second part follows
from the observation in the proof of Theorem 2 about the matching of the TR
moves with the relators.



Fig. 9. The process of moving a virtual ruler over a tangle.

Corollary 2. There exist different proofs obtained from one fixed T correspond-
ing to different sequences of virtual rulers over T .

Proof. See Figures 4 and 5.

Fig. 10. Relations, from left to right: ac = ba, ab = ca, ba = ac, ca = ab.

4 Untangling: the main result and an example

The theory we developed gives us a practical method for proving that a knot
diagram is a diagram of the trivial knot by drawing certain tangle diagrams.

Theorem 3. A knot diagram D (with unique labels) represents the trivial knot
if and only if for each pair of its labels a, b there is a labelled tangle diagram T



which has exactly two free-end arcs labelled a and b, with the property that each
crossing in T is labelled in the same way as some crossing in D.

Proof. The ‘if’ direction follows directly from Corollary 1 and Theorem 2. The
‘only if’ direction follows from the fact that every derivation of an equality of
two letters x = y in OD naturally induces a tangle diagram with two free ends
x and y, with relations of OD being transformed into crossings as on Figure 10.

We present a small example, produced manually. In the next section we report
on our progress with building tangle diagrams using the computer.

Example 1. The knot diagram in Figure 2 represents the trivial knot.

The proof splits into several lemmas, each demonstrating that two arc labels
(that is, two generators of OD) are equal. The lemmas and their proofs are
presented on Figures 11–16; note that these diagrams are not illustrations of
proofs, but actual proofs: that is, the existence of a diagram presented on Figure
11 is, according to Theorem 3, a proof that b = g, and so on. For brevity of
presentation, in some of the lemmas, a rectangle marked i is used as shorthand,
meaning that the diagram from Lemma i should be substituted for this rectangle.
This convention enables us to make diagrams more compact. As an example of
the use of rectangles, compare the diagram in Lemma on Figure 13 with the
equivalent diagram in Figure 3, which presents the same step in the proof. Whilst
the equalities are immediate from the earlier results, the interested reader can
also directly compare the equalities read off from each tangle diagram as one
traverses from one free end to the other (e.g. from b to g on Figure 13) and
compare with the algebraic proof presented earlier (e.g. “bc = ca = gc, hence,
b = g”).
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5 Manipulating tangle diagrams with the computer

One can observe that the tangle diagrams in proofs (for example, like those in
Figure 3) may be assembled from copies of individual crossings of the original
knot diagram by applying steps of the following two types:

— Given a labelled tangle diagram which has, among its end arcs, two adja-
cent end arcs labelled with the same letter, connect these two arcs.

a a
a

— Given two labelled tangle diagrams T and U such that both T and U have
an end arc labelled with the same letter, connect these two arcs.

a
a a

To do this using the computer, instead of tangle diagrams themselves, we
consider words which one can read on end arcs around a tangle diagram (clock-
wise or anticlockwise, starting from any point outside the diagram). To start
with, we list all words which one can read around individual crossings of the
knot diagram such as, for example, acbc around the top crossing of the diagram
on Figure 2 (for the top crossing walking in a small circle around the crossing
meet four arcs and the labels are recorded in the order the arcs are met). When-
ever we have a word a1a2 . . . an−1an, we also produce the word a2 . . . an−1ana1
(which is a cyclic shift of the original word, corresponding graphically to starting
reading from a different point outside the diagram) and the word anan−1 . . . a2a1
(which is the original word inverted, corresponding graphically to reading around
the tangle in the opposite direction)4. In addition to these two ‘trivial’ ways of
producing new words, we have two more, corresponding to the graphical moves
above. Whenever we have a word a1a2a3 . . . an and a1 = a2, we produce the

4 In the implementation presented in Section 6 we did not use word reversion because,
although reversing a word may make a proof shorter, it is not easy to implement it
in the prover software we used.



word a3 . . . an (which corresponds to connecting two adjacent arcs with identical
labels). Whenever we have two words a1a2 . . . an and b1b2 . . . bn and a1 = b1, we
produce the word a2 . . . anb2 . . . bn (which corresponds to connecting two tangle
diagrams)5.

The aim of this process is to produce all (or, to be more precise, ‘sufficiently
many’) two-letter words ab. In our computer experiments (as presented in Section
6), we enumerated all arc labels of the knot diagram in some order and proved
each equality ai = ai+1 by proving that we can produce the word aiai+1.

6 Automated Proofs

We experimented with the procedure described in Section 5 by using its reduction
to automated theorem proving. To a given knot diagram D we can associate a
first-order theory TD in a vocabulary which consists of unary predicate symbol
T , binary functional symbol ∗ and constants e and a1, . . . , ak for all of the labels
of D. The axioms of TD include:

I. Axioms of monoid for (∗, e):
- (x ∗ y) ∗ z = x ∗ (y ∗ z) (associativity of multiplication)

- x ∗ e = e ∗ x = x (e is a unit of the monoid)

II. - a2i = e for all labels ai
III. Initial state axioms:

- T (ai ∗ aj ∗ ak ∗ aj) for all crossings in D, where the over-crossing arc is
labelled by aj and the under-crossing arcs are labelled by ai and ak.

IV. Transition axioms:

- T (ai ∗ x)→ T (x ∗ ai) for all arc labels ai
- T (x) & T (y)→ T (x ∗ y).

The ground terms are built from constants by the monoid operation, and are
meant to represent words read on the ends of arcs around the tangle diagrams.
The intended meaning of T (w) for a word w is a corresponding diagram (i.e
with w read on its end arcs) which can be built following the rules in Section 5.
The initial state axioms declare that the original crossings present us with the
initial building blocks of the tangle diagrams to be able to start construction.
The transition axioms describe permissible operations for building new tangles.
The following result holds.

Proposition 2. A knot diagram D with arcs labelled by a1, . . . , ak is a diagram
of trivial knot (unknot) if and only if TD `

∧
1≤i≤k−1 T (ai ∗ ai+1), where `

denotes first-order logic derivability.

5 Another approach that we tested (as presented in Section 6) is simply to place
two tangle diagrams next to each other without connecting them by an arc; this
corresponds, in terms of labelling words, to concatenating the words.



Proof. Due to Theorem 3 it is sufficient to show that TD ` T (ai ∗ ai+1) iff a
labelled tangle diagram can be built for D with two free end arcs labelled by ai
and ai+1 using the procedure from Section 5.
⇐: Assume that a tangle diagram with free ends labelled by a word w is built

by the procedure. Then straightforward induction on the length of construction
shows that TD ` T (tw), where tw is a term encoding of w, that is a term built
from a1, . . . , ak using ∗. Indeed, the statement holds for initial tangle diagrams
formed by original crossings due to axioms III, which are included in TD. For
the inductive step, we assume that the statement holds for two tangle diagrams
labelled by words w1 and w2, so we have that TD ` T (tw1) and TD ` T (tw2).
Then, if w′ labels a tangle diagram obtained by connecting two adjacent arcs
in the tangle labelled by w1 we have that TD ` T (tw′), using the induction
hypothesis for w1 and the axioms II and I. If a tangle diagram labelled by w′′ is
obtained by connecting tangle diagrams labelled by w1 and w2 then TD ` T (tw′′)
using the inductive hypothesis for w1 and w2 and the transition axioms IV.
⇒: By induction on the number of applications of Modus Ponens rule using

a transition axiom T (x)&T (y) → T (x ∗ y) we show that if TD ` T (tw) then
a tangle diagram can be constructed by the procedure from Section 5, which
is labelled by w′ such that I, II ` tw = tw′ . Indeed, for the base of induction
we notice that the only formulae of the form T (. . .) derivable form TD without
applying Modus Ponens to T (x)&T (y)→ T (x ∗ y) are formulae T (tw′) with tw′

such that I,II ` tw = tw′ for some tw from an initial state axiom T (tw). Then
the crossing corresponding to this axiom provides with the required tangle.

For the step of induction consider a derivation T (tw∗tw′) from already derived
T (tw) and T (tw′) and the transition axiom T (x)&T (y) → T (x ∗ y). By the
induction assumption we have required tangle diagrams constructed for T (tw)
and T (tw′), that is diagrams labelled by w and w′, respectively. Then the tangle
diagram for T (tw ∗ tw′) is constructed by placing latter diagrams next to each
other, and it is labelled by ww′. Further derivations of formulae of the form T (..)
from T (tw ∗ tw′) using axioms I, II and first transition axiom are possible. In all
such cases the required tangle diagram will be either the same as for T (tw ∗ tw′),
or reduced by connecting two adjacent arcs with equal labels.

Proposition 2 suggests a procedure for establishing unknottedness by using
automated provers for first-order logic. Given a knot diagram D, specify a theory
TD and apply an automated theorem prover to TD `

∧
1≤i≤k−1 T (ai ∗ ai+1).

In Table 1 we report on experiments6 using the automated prover Prover9 [14]
on a few well-known unknot diagrams.

The authors have used the same software to implement other algebraic tech-
niques (similar to the one described in Corollary 1) for proving unknottedness
of knot diagrams [4], [11]. For the diagrams listed in Table 1, other techniques
prove unknottedness faster (as expected). However (also as expected), the proofs
of unknottedness produced by the methods proposed in this paper are more
transparent and more amenable to the interpretation as untangling sequences.

6 System used in experiments: Intel(R) Core(TM) i7-4790 CPU 3.60Ghz, RAM 32
GB, Windows 7 Enterprise



Table 1. Time taken to prove unknottedness of some known diagrams

Name of unknot Reference # of crossings Time, s

“Trivial” Trefoil [8] 3 0.01

No Name Fig.2 7 0.09

Culprit [8] 10 5.16

Goerlitz [7] 11 6.38

Thistlethwaite [18] 15 321.0

Ochiai, I [17] 16 1286.1

7 Conclusion & Future work

In the paper, we proposed a novel use of labelled tangle diagrams as a means of
representing certain algebraic proofs. This provides the opportunity for provid-
ing a visual readable proof instead of an algebraic textual proof, such that the
proof notation is of a similar type to the original type of diagrams considered.
We developed theory to demonstrate the equivalence of the use of these tangle
diagrams to express correct algebraic equalities, in effect showing that proofs in
the algebra can be represented visually via these labelled tangles. This was per-
formed making use of some new, reusable machinery (virtual rulers, TR-moves)
that will have independent uses. Whilst such proofs for small scale diagrams can
be manually developed (as per the example in Section 4), there is a definite need
for computer assistance on the larger scale. To this end, we present progress in
automating the production of such proofs. We provide an indication of the time
taken for the automate search for such proofs, and we observe a likely trade-off
in the form of a slow-down of unknot detection in order to be able to develop
the new visual proofs rather than algebraic proofs only.

This work opens us several avenues for future research. Firstly, extracting
readable proofs from the output of a general-purpose prover software is very
difficult. To help with this task, after the prover software has produced proofs,
another script is needed to convert the proofs into a readable form. Alternatively,
we can write our own specialist prover code. Secondly, producing nice-looking
tangle diagrams from proofs manually is time consuming. For larger diagrams,
the actual diagrams must be produced by the computer. After such tool sup-
port is present, an exploration of the utility of the representation and the tool
by different possible user groups (e.g. undergraduate students versus research
mathematicians) will also become feasible.
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