Skip to main content

Using Diagrams to Reason About Biological Mechanisms

  • Conference paper
  • First Online:
Diagrammatic Representation and Inference (Diagrams 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10871))

Included in the following conference series:

Abstract

In developing mechanistic explanations for biological phenomena, researchers have their choice of several different types of diagrams. First, a mechanism diagram spatially represents a proposed mechanism, typically using simple shapes for its parts and arrows for their operations. Beyond this representational role, such diagrams can provide a platform for further reasoning. Published diagrams in circadian biology show how question marks support reasoning about the proposed molecular mechanisms by flagging where there are knowledge gaps or uncertainties. Second, an annotated mechanism diagram can support computational modeling of the dynamics of a proposed mechanism. Each variable and parameter needed for the model is added to the diagram adjacent to the appropriate part or operation. Anchoring the model in this way helps with its construction, revision, and interpretation. Third, a network diagram fosters a different approach to mechanistic reasoning. Layout algorithms are applied to data generated by high-throughput experiments to reveal modules that correspond to mechanisms. We present examples in which network diagrams enable viewers to advance hypotheses about previously unknown mechanisms or unknown parts and operations of known mechanisms as well as to develop new understanding about how a given mechanism is situated in a larger environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., et al.: Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000)

    Article  Google Scholar 

  2. Bechtel, W., Abrahamsen, A.: Explanation: a mechanist alternative. Stud. Hist. Philos. Biol. Biomed. Sci. 36, 421–441 (2005)

    Article  Google Scholar 

  3. Bechtel, W., Richardson, R.C.: Discovering Complexity: Decomposition and Localization as Strategies in Scientific Research. MIT Press, Cambridge (1993/2010). 1993 edition published by Princeton University Press

    Google Scholar 

  4. Burnston, D.C., Sheredos, B., Abrahamsen, A., Bechtel, W.: Scientists’ use of diagrams in developing mechanistic explanations: a case study from chronobiology. Pragmat. Cogn. 22, 224–243 (2014)

    Article  Google Scholar 

  5. Cheng, P.C.-H.: Probably good diagrams for learning: representational epistemic recodification of probability theory. Top. Cogn. Sci. 3, 475–498 (2011)

    Article  Google Scholar 

  6. Craver, C.F., Darden, L.: In Search of Mechanisms: Discoveries Across the Life Sciences. University of Chicago Press, Chicago (2013)

    Book  Google Scholar 

  7. Goldbeter, A.: A model for circadian oscillations in the Drosophila period protein (PER). Proc. R. Soc. Lond. B: Biol. Sci. 261, 319–324 (1995)

    Article  Google Scholar 

  8. Hardin, P.E., Hall, J.C., Rosbash, M.: Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature 343, 536–540 (1990)

    Article  Google Scholar 

  9. Harmer, S.L., Panda, S., Kay, S.A.: Molecular bases of circadian rhythms. Annu. Rev. Cell Dev. Biol. 17, 215–253 (2001)

    Article  Google Scholar 

  10. Hegarty, M.: Mental animation: inferring motion from static displays of mechanical systems. J. Exp. Psychol. Learn. Mem. Cogn. 18, 1084–1102 (1992)

    Article  Google Scholar 

  11. Hegarty, M.: Capacity limits in diagrammatic reasoning. In: Anderson, M., Cheng, P., Haarslev, V. (eds.) Diagrams 2000. LNCS (LNAI), vol. 1889, pp. 194–206. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44590-0_19

    Chapter  Google Scholar 

  12. Jones, N., Wolkenhauer, O.: Diagrams as locality aids for explanation and model construction in cell biology. Biol. Philos. 27, 705–721 (2012)

    Article  Google Scholar 

  13. Konopka, R.J., Benzer, S.: Clock mutants of Drosophila melanogaster. Proc. Natl. Acad. Sci. (USA) 89, 2112–2116 (1971)

    Article  Google Scholar 

  14. Machamer, P., Darden, L., Craver, C.F.: Thinking about mechanisms. Philos. Sci. 67, 1–25 (2000)

    Article  MathSciNet  Google Scholar 

  15. Merico, D., Gfeller, D., Bader, G.D.: How to visually interpret biological data using networks. Nat. Biotechnol. 27, 921–924 (2009)

    Article  Google Scholar 

  16. Nersessian, N.J.: Creating Scientific Concepts. MIT Press, Cambridge (2008)

    Book  Google Scholar 

  17. Paddock, M.L., Boyd, J.S., Adin, D.M., Golden, S.S.: Active output state of the Synechococcus Kai circadian oscillator. Proc. Natl. Acad. Sci. 110, E3849–E3857 (2013)

    Article  Google Scholar 

  18. Relógio, A., Westermark, P.O., Wallach, T., Schellenberg, K., Kramer, A., Herzel, H.: Tuning the mammalian circadian clock: Robust synergy of two loops. PLoS Comput. Biol. 7, e1002309 (2011)

    Article  MathSciNet  Google Scholar 

  19. Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., et al.: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003)

    Article  Google Scholar 

  20. Sheredos, B., Bechtel, W.: Sketching biological phenomena and mechanisms. Top. Cogn. Sci. 9, 970–985 (2017)

    Article  Google Scholar 

  21. Stull, A.T., Hegarty, M.: Model manipulation and learning: fostering representational competence with virtual and concrete models. J. Educ. Psychol. 108, 509–527 (2016)

    Article  Google Scholar 

  22. Tversky, B.: Semantics, syntax, and pragmatics of graphics. In: Holmqvist, K., Ericsson, Y. (eds.) Language and Visualization, pp. 141–158. Lund University Press, Lund (2004)

    Google Scholar 

  23. Tversky, B.: Visualizing thought. Top. Cogn. Sci. 3, 499–535 (2011)

    Article  Google Scholar 

  24. Zhang, E.E., Liu, A.C., Hirota, T., Miraglia, L.J., Welch, G., Pongsawakul, P.Y., et al.: A genome-wide RNAi screen for modifiers of the circadian clock in human cells. Cell 139, 199–210 (2009)

    Article  Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge the support of NSF Grant 1127640.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Bechtel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bechtel, W., Abrahamsen, A., Sheredos, B. (2018). Using Diagrams to Reason About Biological Mechanisms. In: Chapman, P., Stapleton, G., Moktefi, A., Perez-Kriz, S., Bellucci, F. (eds) Diagrammatic Representation and Inference. Diagrams 2018. Lecture Notes in Computer Science(), vol 10871. Springer, Cham. https://doi.org/10.1007/978-3-319-91376-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91376-6_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91375-9

  • Online ISBN: 978-3-319-91376-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics