
A Symmetry Metric for Graphs and Line

Diagrams

Roman Klapaukh1,2, Stuart Marshall2, and David Pearce2

1 Research IT Services, University College London, London NW1 2DN, United
Kingdom

r.klapaukh@ucl.ac.uk
2 School of Engineering and Computer Science, Victoria University of Wellington,

Wellington, New Zealand

Abstract. Symmetry is often considered a desirable feature of dia-
grams. However, quantifying the exact amount of symmetry present is
often difficult. We propose a novel symmetry metric that can score the
amount of rotational, translational, and reflective symmetry present in
a graph or line diagram.
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1 Introduction

Symmetry is a property of visual layouts that is frequently considered to be
desirable. Many believe greater symmetry improves understandability and that,
for example, force-directed layout promotes symmetry [1, 2]. In the study of
Kieffer et al., human subjects showed a preference for graphs with reflectional
symmetry [3]. Likewise, Marriot et al. confirmed that various layout features —
including symmetry — make graphs more memorable [4].

For graphs, Purchase defined an algorithm for computing a symmetry score
and used this to test various claims [5]. Purchase’s symmetry algorithm has two
important limitations which this paper attempts to address. First it focused
only on the symmetries of vertices, but ignored edges. Second it measured only
reflective symmetries, ignoring rotational and translational symmetries.

In this paper we develop a new symmetry metric for straight line diagrams.
Our symmetry metric is an extension of that described by Loy and Eklundh
[6] which extracts reflective, rotational and translational symmetries of feature
points from photographs. We adapt their algorithm to work on known vector
lines, rather than feature points detected in raster images. Unlike points, lines
can be symmetrical with respect to themselves, and for the line drawing we
consider you have perfect knowledge about the lines. This holds true for images
stored in vector formats (e.g. SVG).

2 Background

Purchase [5] defined a symmetry metric for graphs that measured how much
reflective symmetry was present between vertices. However, an important limi-
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tation of Purchase’s algorithm is that it does not consider edges when calculating
a symmetry score. In all connected graphs which are not trees, edges will out-
number vertices. Additionally, edges are drawn as lines connecting the vertices.
This results in the edges having a lot of influence on visual symmetry within the
graph. Therefore, in this work we focus on quantifying the symmetry of edges.

We extend the symmetry detection method of Loy and Eklundh as it is works
in 2D and can identify rotational, translational, and reflective symmetries [6].
However, Loy and Eklundh focus on identification of symmetry for points that
have been extract from photographs, in order to identify regions of symmetry.
However, as we consider lines, which are symmetrical with respect to themselves,
we develop a new method following their process.

An important feature of Loy and Eklundh’s algorithm is that it can detect
when multiple different detected symmetry axes / centres are actually very sim-
ilar (i.e. rather than only when they are identical), and groups them together
into a single axis. This is very useful in generated diagrams as they may have
minor imperfections which should not be penalised.

3 Symmetry metric

Our extended symmetry metric is described in Algorithm 1. The rest of this
section describes each part of the algorithm. The implementation can be found
as part of our open source graph analysis library [7].

The general idea of the algorithm is that it finds every possible axis of mirror,
translational, or rotational symmetry that is present in the diagram. It then
votes to identify which axes affect the largest number of lines. The number of
axes detected is a user defined parameter N . Note that the score for each type
of symmetry is computed separately.

We start with an empty list of pairs of an axis (two floating point numbers)
and its quality score (a number between 0 and 1). Each kind of symmetry has
a different sort of axis: rotational symmetry has a centre of rotation, transla-
tional symmetry has a direction vector, and reflective symmetry has the Hough
transform [8] of the mirror line.

We then convert the lines into a standard format for easy manipulation.
Following Loy and Eklundh [6] we convert them into Scale Invariant Feature
Transform (SIFT) [9] features. Each SIFT feature is a four-tuple consisting of
a location (centre of the line), orientation (angle between the line and x-axis
in degrees), scale (length of the line in pixels), and identifying characteristics
(always 1).

The first set of axes we generate are those that are symmetries of an axis
with itself. For reflective symmetry there are two axes that can be generated
from a single line: its perpendicular bisector, and the line itself. For rotational
symmetry there is one: the position of the line, as a line can be spun around its
centre 180 degrees to get the same line. There are no such axes for translational
symmetry. In each the symmetry is perfect, therefore the quality score for all
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Algorithm 1: Symmetry metric.

Data: symmetryType ∈ {reflective,rotational,translational} & N the number of
axes to find

Result: score ∈ [0..1]
axes = empty list
features = Convert all edges to SIFT features
for fi ∈ features do

if symmetryType == reflective then

axes.add(perpendicularBisector(fi), 1)
axes.add(parallelAxis(fi), 1)

else if symmetryType == rotational then

axes.add(getLocation(fi), 1)

foreach fi, fj ∈ features do

axis = find symmetry axis(symmetryType, fi, fj)
quality = find symmetry quality(symmetryType, fi, fj)
axes.add(axis, quality)

axes = quantiseAxes(axes)
bestAxes = pickBest(axes, N)
score = score(bestAxes)
return score

these axes is 1. Note that these single feature axes of symmetry are not present
in Loy and Eklundh’s algorithm.

All other possible axes of symmetry can be generated by calculating the axes
of symmetry between every pair of lines. The quality score for each axes is the
product of its scale quality (Sij) and orientation quality (Φij) scores. Each score
is bound by [0 . . . 1].

The scale quality (Sij) is the same for all symmetry types and is the same as
Loy and Eklundh’s original paper [6]. In the equation Sij is the scale similarity,
sk is the length of line k, and σs is a scaling factor (sensitivity).

Sij =

(

e

−|si−sj |
σs(si+sj)

)2

(1)

The axis of reflective symmetry is the perpendicular bisector of the line be-
tween the line centres. The orientation quality (Φij), is adapted from Reisfeld et
al. [10], with consideration for lines being symmetrical after 180 degree rotations.

Φij = |cos (θi + θj − 2 ∗ θij)| (2)

For translational symmetry the required translation is the vector difference
in the position of the features. This needs to be normalised (multiplied by -1 if
dy < 0) to compensate for ordering. For translational symmetry the orientation
quality has to be adjusted as the lines are not mirrored.

Φij = |cos (θi − θj)| (3)
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For each pair of features there can be up to two centres of rotational symme-
try. This is because there are two ways to line up the feature orientations, head
to head and head to tail, each of which may require its own centre. When θ1 =
θ2 = 180 both centres will be the same. This is different from the original paper
where there was only one possible centre, and is a result of a line being indis-
tinguishable after a 180 degree rotation. The orientation metric score is always
1.

Having enumerated all of the axes of symmetry, the quality scores are now
used to vote to find the N best axes. We quantise the space, to deal with minor
deviations in location, and sum the symmetry scores for each distinct axis. The
N axes with the highest total scores are the chosen axes.

The final stage of the algorithm is to turn the set of N best axes found into
a number that can be used as a metric. We use the following equation:









∑

axes

number of lines that voted for this axis

N × number of lines









4 Conclusion

We developed a novel metric to evaluate how symmetrical a given line diagram
is with respect to reflective, rotational and translational symmetries.
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