Skip to main content

A Symmetry Metric for Graphs and Line Diagrams

  • Conference paper
  • First Online:
Diagrammatic Representation and Inference (Diagrams 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10871))

Included in the following conference series:

Abstract

Symmetry is often considered a desirable feature of diagrams. However, quantifying the exact amount of symmetry present is often difficult. We propose a novel symmetry metric that can score the amount of rotational, translational, and reflective symmetry present in a graph or line diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Eades, P.: A heuristic for graph drawing. Congr. Numer. 42, 149–160 (1984)

    MathSciNet  Google Scholar 

  2. Purchase, H.C., Cohen, R.F., James, M.: Validating graph drawing aesthetics. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 435–446. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0021827

    Chapter  Google Scholar 

  3. Kieffer, S., Dwyer, T., Marriott, K., Wybrow, M.: HOLA: human-like orthogonal network layout. IEEE TVCG 22(1), 349–358 (2016)

    Google Scholar 

  4. Marriott, K., Purchase, H., Wybrow, M., Goncu, C.: Memorability of visual features in network diagrams. IEEE TVCG 18(12), 2477–2485 (2012)

    Google Scholar 

  5. Purchase, H.C.: Metrics for graph drawing aesthetics. JVLC 13(5), 501–516 (2002)

    Google Scholar 

  6. Loy, G., Eklundh, J.-O.: Detecting symmetry and symmetric constellations of features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006 Part II. LNCS, vol. 3952, pp. 508–521. Springer, Heidelberg (2006). https://doi.org/10.1007/11744047_39

    Chapter  Google Scholar 

  7. Klapaukh, R.: GraphAnalyser. https://github.com/klapaukh/GraphAnalyser. Accessed 20 Dec 2013

  8. Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 15(1), 11–15 (1972)

    Article  Google Scholar 

  9. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceeding of Computer Vision, pp. 1150–1157 (1999)

    Google Scholar 

  10. Reisfeld, D., Wolfson, H., Yeshurun, Y.: Context-free attentional operators: the generalized symmetry transform. Int. J. Comput. Vis. 14(2), 119–130 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Klapaukh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Klapaukh, R., Marshall, S., Pearce, D. (2018). A Symmetry Metric for Graphs and Line Diagrams. In: Chapman, P., Stapleton, G., Moktefi, A., Perez-Kriz, S., Bellucci, F. (eds) Diagrammatic Representation and Inference. Diagrams 2018. Lecture Notes in Computer Science(), vol 10871. Springer, Cham. https://doi.org/10.1007/978-3-319-91376-6_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91376-6_71

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91375-9

  • Online ISBN: 978-3-319-91376-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics