Skip to main content

An Efficient Approximation of Concept Stability Using Low-Discrepancy Sampling

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10872))

Abstract

One key challenge in Formal Concept Analysis is the scalable and accurate computation of stability index as a means to identify relevant formal concepts. Unfortunately, most exact methods for computing stability have an algorithmic complexity that could be exponential w.r.t. the context size. While randomized approximate algorithms, such as Monte Carlo Sampling (MCS), can be good solutions in some situations, they frequently lead to the slow convergence problem with an inaccurate estimation of stability. In this paper, we introduce a new approximation method to estimate the stability using the low-discrepancy sampling (LDS) approach. To improve the convergence rate, LDS uses quasi-random sequence to distribute the sample points evenly across the power set of the concept intent (or extent). This helps avoid the clumping of samples and let all the areas of the sample space be duly represented. Our experiments on several formal contexts show that LDS can achieve faster convergence rate and better accuracy than MCS.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The convergence rate quantifies how quickly the sampling error decreases with an increase in the number of samples.

  2. 2.

    Note that since both \(\sigma _{\text {in}}(c)\) and \(\sigma _{\text {ex}}(c)\) provide dual measurements, we generally use \(\sigma (c)\) throughout the rest of the paper.

  3. 3.

    Publicly available: http://fimi.ua.ac.be/data/.

  4. 4.

    Publicly available: https://pypi.python.org/pypi/concepts.

  5. 5.

    Publicly available: http://people.sc.fsu.edu/~jburkardt/py_src/sobol/sobol.html.

References

  1. Alpen, É.: Précis de Phytotérapie. Édition Alpen (2010). www.alpen.mc/precis-de-phytotherapie

  2. Babin, M.A., Kuznetsov, S.O.: Approximating concept stability. In: Domenach, F., Ignatov, D.I., Poelmans, J. (eds.) ICFCA 2012. LNCS (LNAI), vol. 7278, pp. 7–15. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29892-9_7

    Chapter  MATH  Google Scholar 

  3. Bache, K., Lichman, M.: Mushroom data set (2013). http://archive.ics.uci.edu/ml

  4. Belohlavek, R., Macko, J.: Selecting important concepts using weights. In: Valtchev, P., Jäschke, R. (eds.) ICFCA 2011. LNCS (LNAI), vol. 6628, pp. 65–80. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20514-9_7

    Chapter  Google Scholar 

  5. Buzmakov, A., Kuznetsov, S.O., Napoli, A.: Is concept stability a measure for pattern selection? Procedia Comput. Sci. 31, 918–927 (2014)

    Article  Google Scholar 

  6. Buzmakov, A., Kuznetsov, S.O., Napoli, A.: Scalable estimates of concept stability. In: Glodeanu, C.V., Kaytoue, M., Sacarea, C. (eds.) ICFCA 2014. LNCS (LNAI), vol. 8478, pp. 157–172. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07248-7_12

    Chapter  MATH  Google Scholar 

  7. Caflisch, R.E.: Monte Carlo and quasi-Monte Carlo methods. Acta Numer. 7, 1–49 (1998)

    Article  MathSciNet  Google Scholar 

  8. Davis, A., Gardner, B., Gardner, M.: Deep South (1941). http://networkdata.ics.uci.edu/netdata/html/davis.html

  9. Faure, H., Tezuka, S.: Another random scrambling of digital (t, s)-sequences. In: Fang, K.T., Niederreiter, H., Hickernell, F.J. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp. 242–256. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-642-56046-0_16

    Chapter  Google Scholar 

  10. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, New York (1999). https://doi.org/10.1007/978-3-642-59830-2. Translator C. Franzke

    Book  MATH  Google Scholar 

  11. Klimushkin, M., Obiedkov, S., Roth, C.: Approaches to the selection of relevant concepts in the case of noisy data. In: Kwuida, L., Sertkaya, B. (eds.) ICFCA 2010. LNCS (LNAI), vol. 5986, pp. 255–266. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11928-6_18

    Chapter  Google Scholar 

  12. Kuipers, L., Niederreiter, H.: Uniform distribution of sequences. Courier Corporation (2012)

    Google Scholar 

  13. Kuznetsov, S., Obiedkov, S., Roth, C.: Reducing the representation complexity of lattice-based taxonomies. In: Priss, U., Polovina, S., Hill, R. (eds.) ICCS-ConceptStruct 2007. LNCS (LNAI), vol. 4604, pp. 241–254. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73681-3_18

    Chapter  Google Scholar 

  14. Kuznetsov, S.O.: Learning of simple conceptual graphs from positive and negative examples. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 384–391. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-48247-5_47

    Chapter  Google Scholar 

  15. Kuznetsov, S.O.: On stability of a formal concept. Ann. Math. Artif. Intell. 49(1), 101–115 (2007)

    Article  MathSciNet  Google Scholar 

  16. Kuznetsov, S.O., Makhalova, T.P.: Concept interestingness measures: a comparative study. In: Proceedings of the Twelfth International Conference on Concept Lattices and Their Applications, Clermont-Ferrand, France, 13–16 October 2015, pp. 59–72 (2015)

    Google Scholar 

  17. Kuznetsov, S.O., Makhalova, T.P.: On interestingness measures of formal concepts. CoRR abs/1611.02646 (2016)

    Google Scholar 

  18. Landau, D.P., Binder, K.: A Guide to Monte Carlo Simulations in Statistical Physics. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  19. Lemieux, C.: Monte Carlo and quasi-Monte Carlo sampling (2009)

    Google Scholar 

  20. Muangprathub, J.: A novel algorithm for building concept lattice. Appl. Math. Sci. 8(11), 507–515 (2014)

    Google Scholar 

  21. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia (1992)

    Book  Google Scholar 

  22. Owen, A.B.: Monte Carlo extension of quasi-Monte Carlo. In: Simulation Conference Proceedings Winter, vol. 1, pp. 571–577. IEEE (1998)

    Google Scholar 

  23. Roth, C., Obiedkov, S., Kourie, D.G.: On succinct representation of knowledge community taxonomies with formal concept analysis. Int. J. Found. Comput. Sci. 19(02), 383–404 (2008)

    Article  MathSciNet  Google Scholar 

  24. Schretter, C., He, Z., Gerber, M., Chopin, N., Niederreiter, H.: Van der corput and golden ratio sequences along the hilbert space-filling curve. In: Cools, R., Nuyens, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods, vol. 163, pp. 531–544. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33507-0_28

    Chapter  MATH  Google Scholar 

  25. Zhi, H.L.: On the calculation of formal concept stability. J. Appl. Math. 2014, 1–6 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

We acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed-Hamza Ibrahim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ibrahim, MH., Missaoui, R. (2018). An Efficient Approximation of Concept Stability Using Low-Discrepancy Sampling. In: Chapman, P., Endres, D., Pernelle, N. (eds) Graph-Based Representation and Reasoning. ICCS 2018. Lecture Notes in Computer Science(), vol 10872. Springer, Cham. https://doi.org/10.1007/978-3-319-91379-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91379-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91378-0

  • Online ISBN: 978-3-319-91379-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics