Skip to main content

Lifted Dynamic Junction Tree Algorithm

  • Conference paper
  • First Online:
Graph-Based Representation and Reasoning (ICCS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10872))

Included in the following conference series:

Abstract

Probabilistic models involving relational and temporal aspects need exact and efficient inference algorithms. Existing approaches are approximative, include unnecessary grounding, or do not consider the relational and temporal aspects of the models. One approach for efficient reasoning on relational static models given multiple queries is the lifted junction tree algorithm. In addition, for propositional temporal models, the interface algorithm allows for efficient reasoning. To leverage the advantages of the two algorithms for relational temporal models, we present the lifted dynamic junction tree algorithm, an exact algorithm to answer multiple queries efficiently for probabilistic relational temporal models with known domains by reusing computations for multiple queries and multiple time steps. First experiments show computational savings while appropriately accounting for relational and temporal aspects of models.

This research originated from the Big Data project being part of Joint Lab 1, funded by Cisco Systems Germany, at the centre COPICOH, University of Lübeck.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmadi, B., Kersting, K., Mladenov, M., Natarajan, S.: Exploiting symmetries for scaling loopy belief propagation and relational training. Mach. Learn. 92(1), 91–132 (2013)

    Article  MathSciNet  Google Scholar 

  2. Braun, T., Möller, R.: Lifted junction tree algorithm. In: Friedrich, G., Helmert, M., Wotawa, F. (eds.) KI 2016. LNCS (LNAI), vol. 9904, pp. 30–42. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46073-4_3

    Chapter  Google Scholar 

  3. Braun, T., Möller, R.: Counting and conjunctive queries in the lifted junction tree algorithm. In: Croitoru, M., Marquis, P., Rudolph, S., Stapleton, G. (eds.) 5th International Workshop on Graph Structures for Knowledge Representation and Reasoning. LNCS, vol. 10775, pp. 54–72. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-78102-0_3

    Chapter  Google Scholar 

  4. Darwiche, A.: Modeling and Reasoning with Bayesian Networks. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  5. Dignös, A., Böhlen, M.H., Gamper, J.: Temporal alignment. In: Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data, pp. 433–444. ACM (2012)

    Google Scholar 

  6. Dylla, M., Miliaraki, I., Theobald, M.: A temporal-probabilistic database model for information extraction. Proc. VLDB Endow. 6(14), 1810–1821 (2013)

    Article  Google Scholar 

  7. Geier, T., Biundo, S.: Approximate online inference for dynamic Markov logic networks. In: Proceedings of the 23rd IEEE International Conference on Tools with Artificial Intelligence (ICTAI), pp. 764–768. IEEE (2011)

    Google Scholar 

  8. Kanagal, B., Deshpande, A.: Lineage processing over correlated probabilistic databases. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of data, pp. 675–686. ACM (2010)

    Google Scholar 

  9. Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on graphical structures and their application to expert systems. J. R. Stat. Soc. Ser. B (Methodol.) 50, 157–224 (1988)

    MathSciNet  MATH  Google Scholar 

  10. Manfredotti, C.E.: Modeling and Inference with Relational Dynamic Bayesian Networks. Ph.D. thesis, Ph.D. Dissertation, University of Milano-Bicocca (2009)

    Chapter  Google Scholar 

  11. Milch, B., Zettlemoyer, L.S., Kersting, K., Haimes, M., Kaelbling, L.P.: Lifted probabilistic inference with counting formulas. In: Proceedings of AAAI, vol. 8, pp. 1062–1068 (2008)

    Google Scholar 

  12. Murphy, K., Weiss, Y.: The factored frontier algorithm for approximate inference in DBNs. In: Proceedings of the Seventeenth conference on Uncertainty in artificial intelligence, pp. 378–385. Morgan Kaufmann Publishers Inc. (2001)

    Google Scholar 

  13. Murphy, K.P.: Dynamic Bayesian Networks: Representation, Inference and Learning. Ph.D. thesis, University of California, Berkeley (2002)

    Google Scholar 

  14. Nitti, D., De Laet, T., De Raedt, L.: A particle filter for hybrid relational domains. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2764–2771. IEEE (2013)

    Google Scholar 

  15. Papai, T., Kautz, H., Stefankovic, D.: Slice normalized dynamic Markov logic networks. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 1907–1915 (2012)

    Google Scholar 

  16. Poole, D.: First-order probabilistic inference. In: Proceedings of IJCAI, vol. 3, pp. 985–991 (2003)

    Google Scholar 

  17. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1), 107–136 (2006)

    Article  Google Scholar 

  18. de Salvo Braz, R.: Lifted First-Order Probabilistic Inference. Ph.D. thesis, Ph.D. Dissertation, University of Illinois at Urbana Champaign (2007)

    Google Scholar 

  19. Taghipour, N., Davis, J., Blockeel, H.: First-order decomposition trees. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 1052–1060 (2013)

    Google Scholar 

  20. Taghipour, N., Fierens, D., Davis, J., Blockeel, H.: Lifted variable elimination: decoupling the operators from the constraint language. J. Artif. Intell. Res. 47(1), 393–439 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Thon, I., Landwehr, N., De Raedt, L.: Stochastic relational processes: efficient inference and applications. Mach. Learn. 82(2), 239–272 (2011)

    Article  MathSciNet  Google Scholar 

  22. Vlasselaer, J., Van den Broeck, G., Kimmig, A., Meert, W., De Raedt, L.: TP-Compilation for inference in probabilistic logic programs. Int. J. Approx. Reason. 78, 15–32 (2016)

    Article  Google Scholar 

  23. Vlasselaer, J., Meert, W., Van den Broeck, G., De Raedt, L.: Efficient probabilistic inference for dynamic relational models. In: AAAIWS’14-13 Proceedings of the 13th AAAI Conference on Statistical Relational AI, pp. 131–132. AAAI Press (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Gehrke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gehrke, M., Braun, T., Möller, R. (2018). Lifted Dynamic Junction Tree Algorithm. In: Chapman, P., Endres, D., Pernelle, N. (eds) Graph-Based Representation and Reasoning. ICCS 2018. Lecture Notes in Computer Science(), vol 10872. Springer, Cham. https://doi.org/10.1007/978-3-319-91379-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91379-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91378-0

  • Online ISBN: 978-3-319-91379-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics