Skip to main content

Associative Probabilistic Neuro-Fuzzy System for Data Classification Under Short Training Set Conditions

  • Conference paper
  • First Online:
Contemporary Complex Systems and Their Dependability (DepCoS-RELCOMEX 2018)

Abstract

The paper proposes a classifying neuro-fuzzy system intended for operating under short training set and nonconvex classes conditions. The proposed system is constructed of feedforward four-layered architecture that solves task of probabilistic classification and fuzzy associative memory which is based on autoassociative evolving memory on fuzzy basis functions that solves fuzzy classification task. An essential aspect of the considered hybrid system of computational intelligence is its high performance and ease of numerical implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufman Publishers, Amsterdam (2006)

    MATH  Google Scholar 

  2. Zaki, M.J., Meira Jr., W.M.: Data Mining and Analysis: Fundamental Concepts and Algorithms. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  3. Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, San Francisco (2011)

    Google Scholar 

  4. Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press, New York (1972)

    MATH  Google Scholar 

  5. Bishop, C.M.: Neural Networks for Pattern Recognition. Clarendon Press, Oxford (1995)

    MATH  Google Scholar 

  6. Rojas, R.: Neural Networks. A Systematic Introduction. Springer, Berlin (1996)

    MATH  Google Scholar 

  7. Looney, C.: Pattern Recognition Using Neural Networks: Theory and Algorithms for Engineers and Scientists. Oxford University Press, New York (1997)

    Google Scholar 

  8. Callan, R.: The Essence of Neural Networks. Prentice Hall Europe, London (1999)

    Google Scholar 

  9. Haykin, S.: Neural Networks. A Comprehensive Foundation. Prentice Hall, Upper Saddle River (1999)

    MATH  Google Scholar 

  10. Zahirniak, D.R., Chapman, R., Rogers, S.K., Suter, B.W., Kabriski, M., Pyatti, V.: Pattern recognition using radial basis function networks. In: Proceedings of the 6-th Annual Aerospace Applications of Al Conference, Dayton, pp. 249–260 (1990)

    Google Scholar 

  11. Nelles, O.: Nonlinear System Identification. Springer, Berlin (2001)

    Book  Google Scholar 

  12. Specht, D.F.: Probabilistic neural networks. Neural Netw. 3(1), 109–118 (1990)

    Article  Google Scholar 

  13. Specht, D.F.: Probabilistic neural networks and polynomial ADALINE as complementary techniques for classification. IEEE Trans. Neural Netw. 1(1), 111–121 (1990)

    Article  Google Scholar 

  14. Rutkowski, L.: Computational Intelligence. Methods and Techniques. Springer, Berlin (2008)

    Book  Google Scholar 

  15. Kroll, A.: Computational Intelligence. Eine Einfuerung in Probleme, Methoden und technische Anwendungen. Oldenbourg Verlag, Muenchen (2013)

    Google Scholar 

  16. Kruse, R., Borgelt, C., Klawonn, F., Moewes, C., Steinbrecher, M., Held, P.: Computational Intelligence. A Methodological Introduction. Springer, London (2013)

    MATH  Google Scholar 

  17. Du, K.-L., Swamy, M.N.S.: Neural Networks and Statistical Learning. Springer, London (2014)

    Book  Google Scholar 

  18. Jang, J.-S.R., Sun, C.-T., Mizutani, E.: Neuro-Fuzzy and Soft Computing – Computational Approach to Learning and Machine Intelligence. Prentice Hall, Upper Saddle River (1997)

    Google Scholar 

  19. Bodyanskiy, Y., Vynokurova, O., Setlak, G., Peleshko, D., Mulesa, P.: Adaptive multivariate hybrid neuro-fuzzy system and its on-board fast learning. Neurocomputing 230, 409–416 (2017)

    Article  Google Scholar 

  20. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer Academic Publishers, Norwell (1981)

    Book  Google Scholar 

  21. Hoeppner, F., Klawonn, F., Kruse, R., Runkler, T.: Fuzzy Cluster Analysis Methods for Classification, Data Analysis and Image Recognition. Wiley, Chichester (1999)

    MATH  Google Scholar 

  22. Bodyanskiy, Y., Shubkina, O.: Semantic annotation of text documents using evolving neural network based on principle “Neurons at Data Points”. In: Proceedings of the 4th International Workshop on Inductive Modelling, IWIM 2011, Kyiv, pp. 31–37 (2011)

    Google Scholar 

  23. Bodyanskiy, Y., Shubkina, O.: Semantic annotation of text documents using modified probabilistic neural network. In: Proceedings of the 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems, 15–17 September 2011, Prague, pp. 328–331 (2011)

    Google Scholar 

  24. Bodyanskiy, Y., Pliss, I., Volkova, V.: Modified probabilistic neuro-fuzzy network for text documents processing. Int. J. Compt. 11(4), 391–396 (2012)

    Google Scholar 

  25. Parzen, E.: On the estimation of a probability density function and the model. Ann. Math. Stat. 38, 1065–1076 (1962)

    Article  Google Scholar 

  26. Moody, J., Darken, C.J.: Fast learning in networks of locally-tuned processing units. Neural Comput. 1, 281–299 (1989)

    Article  Google Scholar 

  27. Specht, D.E.: A general regression neural network. IEEE Trans. Neural Netw. 6(2), 568–576 (1991)

    Article  Google Scholar 

  28. Farrell, J.A., Michel, A.N.: A synthesis procedure for Hopfield’s continuous-time associative memory. IEEE Trans. Circuits Syst. 37, 877–884 (1990)

    Article  MathSciNet  Google Scholar 

  29. Hassoun, M.H., Watta, P.B.: Associative memory networks. In: Handbook on Neural Computation, pp. 1.3:1–1.3:14. IOP Publishing Ltd. and Oxford University Press, Oxford (1997)

    Google Scholar 

  30. Cios, K.J., Pedrycz, W.: Neural-fuzzy algorithms. In: Handbook on Neural Computation, pp. 1.3:1–1.3:7. IOP Publishing Ltd. and Oxford University Press, Oxford (1997)

    Google Scholar 

  31. Bodyanskiy, Y., Teslenko, N.: Autoassociative memory evolving system based on fuzzy basis functions. Sci. J. Riga Tech. Univ. “Computer Science, Information Technology and Management Sci.”, 44, 9–14 (2010)

    Google Scholar 

  32. Murphy, P.M., Aha, D.W.: UCI Repository of Machine Learning Databases. Department of Information and Computer Science, University of California (1994). http://www.ics.uci.edu/mlearn/MLRepository.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yevgeniy Bodyanskiy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bodyanskiy, Y., Dolotov, A., Peleshko, D., Rashkevych, Y., Vynokurova, O. (2019). Associative Probabilistic Neuro-Fuzzy System for Data Classification Under Short Training Set Conditions. In: Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk, J. (eds) Contemporary Complex Systems and Their Dependability. DepCoS-RELCOMEX 2018. Advances in Intelligent Systems and Computing, vol 761. Springer, Cham. https://doi.org/10.1007/978-3-319-91446-6_6

Download citation

Publish with us

Policies and ethics