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Abstract. Recent advances in the field of network embedding have
shown the low-dimensional network representation is playing a critical
role in network analysis. However, most of the existing principles of net-
work embedding do not incorporate auxiliary information such as content
and labels of nodes flexibly. In this paper, we take a matrix factorization
perspective of network embedding, and incorporate structure, content
and label information of the network simultaneously. For structure, we
validate that the matrix we construct preserves high-order proximities of
the network. Label information can be further integrated into the matrix
via the process of random walk sampling to enhance the quality of em-
bedding in an unsupervised manner, i.e., without leveraging downstream
classifiers. In addition, we generalize the Skip-Gram Negative Sampling
model to integrate the content of the network in a matrix factorization
framework. As a consequence, network embedding can be learned in a
unified framework integrating network structure and node content as well
as label information simultaneously. We demonstrate the efficacy of the
proposed model with the tasks of semi-supervised node classification and
link prediction on a variety of real-world benchmark network datasets.

1 Introduction

The rapid growth of applications based on networks has posed major challenges
of effective processing of network data, among which a critical task is network
data representation. The primitive representation of a network is usually very
sparse and suffers from overwhelming high dimensionality, which limits its gen-
eralization in statistical learning. To deal with this issue, network embedding
aims to learn latent representations of nodes on a network while preserving the
structure and the inherent properties of the network, which can be effectively
exploited by classical vector-based machine learning models for tasks including
node classification, link prediction, and community detection, etc. [6,3,10,1].

Recently, inspired by the advances of neural representation learning in lan-
guage modeling, which is based on the principle of learning the embedding vector
of a word by predicting its context [12,13], a number of network embedding ap-
proaches have been proposed with the paradigm of learning the embedding vector
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of a node by predicting its neighborhood [17,20,3]. Specifically, latent represen-
tations of network nodes are learned by treating short random walk sequences as
sentences to encode structural proximity in a network. Existing results demon-
strate the effectiveness of the neural network embedding approaches in the tasks
of node classification, behavior prediction, etc.

However, existing network embedding methods, including DeepWalk [17],
LINE [20] and node2vec [3], are typically based on structural proximities only
and do not incorporate other information such as node content flexibly. In this
paper, we explore the question whether network structure and auxiliary proper-
ties of the network such as node content and label information can be integrated
in a unified framework of network embedding. To achieve that, we take a matrix
factorization perspective of network embedding with the benefits of natural in-
tegration of structural embedding and content embedding simultaneously, where
label information can be incorporated flexibly.

Specifically, motivated by the recent work [9] that explains the word embed-
ding model of Skip-Gram Negative Sampling (SGNS) as a matrix factorization
of the words’ co-occurrence matrix, we build a co-occurrence matrix of struc-
tural proximities for a network based on a random walk sampling procedure. The
process of SGNS can then be formulated as minimizing a matrix factorization
loss, which can be naturally integrated with representation learning of node con-
tent. In addition, label information can be exploited in the process of building
the co-occurrence matrix to enhance the quality of network embedding, which
is achieved by decomposing the context of a node into the structure context
generated with random walks, as well as the label context based on the given
label information.

Our main contributions can be summarized as follows:

– We propose a unified framework of Auxiliary information Preserved Network
Embedding with matrix factorization, abbreviated as APNE, which can ef-
fectively learn the latent representations of nodes, and provide a flexible
integration of network structure, node content, as well as label information
without leveraging downstream classifiers.

– We verify that the structure matrix we generate is an approximation of the
high-order proximity of the network known as rooted PageRank.

– We extensively evaluate our framework on four benchmark datasets and two
tasks including semi-supervised classification and link prediction. Results
show that the representations learned by our proposed method are general
and powerful, producing significantly increased performance over the state
of the art on both tasks.

2 Related Work

2.1 Network Embedding

Network embedding has been extensively studied in the literature [1]. Recently,
motivated by the advances of neural representation learning in language mod-
eling, a number of embedding learning methods have been proposed based on
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the Skip-Gram model. A representative model is DeepWalk [17], which exploits
random walk to generate sequences of instances as the training corpus, followed
by utilizing the Skip-Gram model to obtain the embedding vectors of nodes.
Node2vec [3] extend DeepWalk with sophisticated random walk schemes. Sim-
ilarly in LINE [20] and GraRep [2], network embedding is learned by directly
optimizing the objective function inspired from the Skip-Gram model. To fur-
ther incorporate auxiliary information into network embedding, many efforts
have been made. Among them, TADW [22] formulates DeepWalk in a matrix
factorization framework, and jointly learns embeddings with the structure in-
formation and preprocessed features of text information. This work is further
extended by HSCA [25], DMF [24] and MMDW [21] with various additional
information. In SPINE [4], structural identities are incorporated to jointly pre-
serve local proximity and global proximity of the network simultaneously in
the learned embeddings. However, none of the above models jointly consider
structure, content and label information in a unified model, which are the fun-
damental elements of a network [1]. Recently, TriDNR [16] and LANE [5] tackle
this problem both through implicit interactions between the three elements.
TriDNR leverages multiple skip-gram algorithms between node-word and word-
label pairs, while LANE first constructs three network affinity matrices from
the three elements respectively, followed by executing SVD on affinity matri-
ces with additional pairwise interactions. Although empirically effective, these
methods do not provide a clear objective articulating how the three aspects are
integrated in the embeddings learned, and is relatively inflexible to generalize to
other scenarios.

In contrast to the above models, we propose a unified framework to learn net-
work embeddings from structure, content and label simultaneously. The superi-
ority of our framework is threefold: a) the structure matrix we generate contains
high-order proximities of the network, and the label information is incorporated
by explicitly manipulating the constructed matrix rather than through implicit
multi-hop interactions [16,5]; b) instead of leveraging label information through
an explicitly learned classifier (e.g., SVM [21], linear classifier [24] and neural
networks [23,6]) whose performance is not only related to the quality of embed-
dings but also the specific classifiers being used, we exploit the label information
without leveraging any downstream classifiers, which enables the flexibility of our
model to generalize to different tasks; c) while most of the above models only
consider text descriptions of nodes, we use raw features contained in datasets as
the content information, which is more generalized to various types of networks
in real world such as social networks.

2.2 Matrix Factorization and Word Embedding

Matrix Factorization (MF) has been proven effective in various machine learning
tasks, such as dimensionality reduction, representation learning, recommenda-
tion systems, etc. Recently, connections have been built between MF and word
embedding models. It is shown in [8] that the Skip-Gram with Negative Sam-
pling (SGNS) model is an Implicit Matrix Factorization (IMF) that factorizes
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Fig. 1. The overall procedure of our framework (APNE). Different colors indicate
different labels of nodes.

a word-context matrix, where the value of each entry is the pointwise mutual
information (PMI) between a word and context pair, indicating the strength of
association. It is further pointed out in [9] that the SGNS objective can be refor-
mulated in a representation learning view with an Explicit Matrix Factorization
(EMF) objective, where the matrix being factorized here is the co-occurrence
matrix among words and contexts.

In this paper, we extend the matrix factorization perspective of word em-
bedding into the task of network embedding. More importantly, we learn the
network embedding by jointly factorizing the structure matrix and the content
matrix of the network, which can be further improved by leveraging auxiliary la-
bel information. Different from most existing network embedding methods based
on matrix factorization, which employ either trivial objective functions (F-norm
used in TADW) or traditional factorization algorithms (SVD used in GraRep)
for optimization, we design a novel objective function based on SGNS in our
framework. Furthermore, the proposed method is general and not confined to
specific downstream tasks, such as link prediction [3] and node classification [17],
and we do not leverage any classifiers either.

3 Network Embedding with Matrix Factorization

In this section, we propose a novel approach for network embedding based on
a unified matrix factorization framework, which consists of three procedures as
illustrated in Figure 1. We follow the paradigm of treating random walk se-
quences as sentences to encode structural proximities in a network. However,
unlike the EMF objective for word embedding where the matrix to factorize is
clearly defined as the word-context co-occurrence matrix, for network embed-
ding, there is a gap between the random walk procedure and the co-occurrence
matrix. Therefore, we start with proposing a random walk sampling process to
build a co-occurrence matrix, followed by theoretical justification of its property
of preserving the high-order structural proximity in the network, based on which
we present the framework of network embedding with matrix factorization.

3.1 High-Order Proximity Preserving Matrix

Given an undirected network G = {V,E} which includes a set of nodes V con-
nected by a set of edges E, the corresponding adjacency matrix is A, where
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Algorithm 1 Sampling the general co-occurrence matrix

Input: The transition matrix P , window size l
Output: Co-occurrence matrix D
1: Sample random walks C based on P
2: for every node sequence in C do
3: Uniformly sample (i, j) with |i− j| < l
4: Dvi,vj = Dvi,vj + 1
5: end for

Ai,j = wi,j indicates an edge with weight wi,j between the i-th node vi and
the j-th node vj . And we denote the transition matrix of G as P , where Pi,j =

wi,j∑|V |
k=1 wi,k

. Next, a list of node sequences C can be generated with random walks

on the network.

Given C, we can generate the co-occurrence matrix D of G with the n-gram
algorithm. The procedure is summarized in Algorithm 1. In short, for a given
node in a node sequence, we increase the co-occurrence count of two nodes if
and only if they are in a window of size l.

Next we show that the co-occurrence matrix generated by Algorithm 1 pre-
serves the high-order structural proximity in the network with the following
theorem:

Theorem 1. Define the high-order proximity S of the network G as

Sl =
∑l

k=1 P
k

where l denotes the order of the proximity as well as the window size in Algo-
rithm 1. Then, under the condition that the random walk procedure is repeated
enough times and the generated list of node sequences C covers all paths in the
network G, we can derive that according to [22]:

l ·Dnor = Sl (1)

where l is the window size in Algorithm 1, and the matrix Dnor denotes the ex-
pectation of row normalized co-occurrence matrix D, i.e., Dnor

i,j = E[
Di,j∑|V |

k=1Di,k

].

Note that the (i, j)-th entry of the left side of Equation (1) can be written

as E[
Di,j∑|V |

k=1Di,k/l
], which is the expected number of times that vj appears in the

left or right l-neighborhood of vi.
To investigate into the structural information of the network encoded in the

co-occurrence matrix D, we first consider a well-known high-order proximity of a
network named rooted PageRank (RPR) [19], defined as SRPR = (1−βRPR)(I−
βRPRP )−1, where βRPR ∈ (0, 1) is the probability of randomly walking to a
neighbor rather than jumping back. The (i, j)-th entry of SRPR is the probability
that a random walk from node vi will stop at vj in the steady state, which can
be used as an indicator of the node-to-node proximity. SRPR can be further
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rewritten as:

SRPR =(1− βRPR)(I − βRPRP )−1 (2)

=(1− βRPR)

∞∑
k=0

βk
RPRP

k (3)

We next show that for an undirected network, where P is symmetric, the
row normalized co-occurrence matrix Dnor is an approximation of the rooted
PageRank matrix SRPR.

Theorem 2. When l is sufficiently large, for Dnor defined as Dnor = 1
l

∑l
k=1 P

k,

and K = b− log l(1−βRPR)
log βRPR

c, the `-2 norm of the difference between Dnor and SRPR

can be bounded by K: ∥∥∥SRPR −Dnor
∥∥∥
2
≤ 2− 2βK+1

RPR (4)

Proof of Theorem 2. Here we omit the superscript of SRPR and the subscript
of βRPR in the proof for simplicity. Substituting (2) and reformulating the left
side of (4) we have:

‖S −Dnor‖2 =

∥∥∥∥∥(1− β)

∞∑
k=0

βkP k − 1

l

l∑
k=1

P k

∥∥∥∥∥
2

=

∥∥∥∥∥(1− β)

l∑
k=0

βkP k − 1

l

l∑
k=0

P k +
1

l
+ (1− β)

∞∑
k=l+1

βkP k

∥∥∥∥∥
2

≤

∥∥∥∥∥
l∑

k=0

P k

[
(1− β)βk − 1

l

]∥∥∥∥∥
2

+ (1− β)

∥∥∥∥∥
∞∑

k=l+1

βkP k

∥∥∥∥∥
2

+
1

l

≤
l∑

k=0

λk
max

∣∣∣∣(1− β)βk − 1

l

∣∣∣∣+ (1− β)

∞∑
k=l+1

βkλk
max +

1

l

where λmax is the largest singular value of matrix P , which is also the eigenvalue
of P for the reason that P is symmetric and non-negative. Note that P is the
transition matrix, which is also known as the Markov matrix. And it can be
easily proven that the largest eigenvalue of a Markov matrix is always 1, i.e.,
λmax = 1. We eliminate the absolute value sign by splitting the summation at

K = b− log l(1−β)
log β c, then we have:

‖S −Dnor‖2 ≤
K∑

k=0

[
(1− β)βk − 1

l

]
+

l∑
k=K+1

[
1

l
− (1− β)βk

]

+ (1− β)

∞∑
k=l+1

βk +
1

l

= 1− βK+1 − βK+1(1− βl−K) +
l − 2K

l
+ βl+1

= 1− 2βK+1 + 2βl+1 +
l − 2K

l
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Algorithm 2 Sampling general co-occurrence matrix with structure and label
context
Input: The transition matrix P , labeled nodes L, parameters m, l, d
Output: Co-occurrence matrix D
1: Sample random walks C of length d based on P
2: for every node sequence in C do
3: Uniformly sample (i, j) with |i− j| < l
4: Dvi,vj = Dvi,vj + 1
5: end for
6: for k = 1 to m do
7: Uniformly sample a node vi in L
8: Uniformly sample a node vj with the same label as node vi
9: Dvi,vj = Dvi,vj + 1

10: end for

Note that when l is sufficiently large, according to the definition of K, we have
K � l. Given β ∈ (0, 1), we can derive:

‖S −Dnor‖2 ≤ 2− 2βK+1.

With Theorem 2, we can conclude that the normalized co-occurrence matrix
Dnor we construct is an approximation of the rooted PageRank matrix SRPR

with a bounded `-2 norm.
Note that in TADW [22] and its follow-up works [25,24] which also apply

matrix factorization to learn network embeddings, the matrix constructed to

represent the structure of a network is P+P 2

2 , which is a special case of Dnor

when l = 2. As comparison, we construct a general matrix while preserving
high-order proximities of the network with theoretical justification.

3.2 Incorporating Label Context

Apparently, the co-occurrence value between node vi and context vc indicates
the similarity between them. A larger value of co-occurrence indicates closer
proximity in the network, hence higher probability of belonging to the same class.
This intuition coincides with the label information of nodes. Therefore, with the
benefit of integer values in D, label information can be explicitly incorporated
in the procedure of sampling D to enhance the proximity between nodes, which
can additionally alleviate the problem of isolated nodes without co-occurrence
in structure, i.e., we consider isolated nodes through label context instead of
structure context.

Specifically, we randomly sample one node among labeled instances, followed
by uniformly choosing another node with the same label and update the corre-
sponding co-occurrence count in D. As a consequence, the co-occurrence matrix
D captures both structure co-occurrence and label co-occurrence of instances.
The complete procedure is summarized in Algorithm 2, where m is a parameter
controlling the ratio between the structure and label context.
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In this way, while preserving high-order proximities of the network, we can in-
corporate supervision into the model flexibly without leveraging any downstream
classifiers, which is another important advantage of our method. By contrast,
most existing methods are either purely unsupervised [22] or leveraging label
information through downstream classifiers [21,24].

3.3 Joint Matrix Factorization

The method proposed above generates the co-occurrence matrix from a network
and bridges the gap between word embedding and network embedding, allowing
us to apply the matrix factorization paradigm to network embedding. With
the flexibility of the matrix factorization principle, we propose a joint matrix
factorization model that can learn network embeddings exploiting not only the
topological structure and label information but also the content information of
the network simultaneously.

Given the co-occurrence matrix D ∈ R|V |×|V | and the content matrix F ∈
RNf×|V |, where |V | and Nf represent the number of nodes in the network and
the dimensionality of node features respectively. Let d be the dimensionality
of embedding. The objective here is to learn the embedding of a network G,
denoted as the matrix W ∈ Rd×|V |, by minimizing the loss of factorizing the
matrices D and F jointly as:

min
W ,S

MF (D,F TSW ) (5)

where MF (·, ·) is the reconstruction loss of matrix factorization which will be
introduced later, and S ∈ RNf×d can be regarded as the feature embedding
matrix, thus F TS is the feature embedding dictionary of nodes.

By solving the joint matrix factorization problem in (5), the structure in-
formation in D and the content information in F are integrated to learn the
network embeddings W . This is inspired by Inductive Matrix Completion [14],
a method originally proposed to complete a gene-disease matrix with gene and
disease features. However, we take a completely different loss function here in
light of the word embedding model of SGNS with a matrix factorization per-
spective [9].

We first rewrite (5) in a representation learning view as:

min
W ,S

∑
i

MF (di,F
TSwi) (6)

where MF (·, ·) is the representation loss functions evaluating the discrepancy
between the ith column of D and F TSW . F TS is the feature embedding dic-
tionary, and the embedding vector of the ith node, wi ∈ Rd, can be learned by
minimizing the loss of representing its structure context vector di via the feature
embedding F TS.

We then proceed to the objective of factorizing the co-occurrence matrix D
and the content matrix F jointly, denoted as MF (di,F

TSwi). We follow the
paradigm of explicit matrix factorization of the SGNS model and derive the
following theorem according to [9]:
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Theorem 3. For a node i in the network, we denote Qi,c as a pre-defined upper
bound for the possible co-occurrence count between node i and context c. With
the equivalence of Skip-Gram Negative Sampling (SGNS) and Explicit Matrix
Factorization (EMF) [9], the representation loss MF (·, ·) can be defined as the
negative log probability of observing the structure vector di given i and F TS

when Qi,c is set to k#(i)#(c)
|D| + #(i, c). To be more concrete,

MF (di,F
TSwi) = −

∑
c∈|V | logP (di,c|fT

c Swi)

where fc ∈ RNf is the c-th column of the content matrix F , i.e., the fea-
ture vector of node c, #(i, c) is the co-occurrence count between node i and c,
#(i) =

∑
c∈|V |#(i, c), #(c) =

∑
i∈|V |#(i, c), |D| =

∑
i,c∈|V |#(i, c) and k is

the negative sampling ratio.

Based on Theorem 3, we can derive:

MF (D,F TSW ) ,
|V |∑
i=1

MF (di,F
TSwi)

= −
|V |∑
i=1

|V |∑
c=1

logP (di,c|fT
c Swi)

Finally, we can formulate the objective of the joint matrix factorization
framework with parameters W and S as:

L(W ,S) = MF (D,F TSW )

= −
|V |∑
i=1

|V |∑
c=1

logP (di,c|fT
c Swi)

(7)

3.4 Optimization

To minimize the loss function in (7) which integrates structure, label and content
simultaneously, we utilize a novel optimization algorithm leveraging the alter-
nating minimization scheme (ALM), which is a widely adopted method in the
matrix factorization literature.

First we derive the gradients of (7) as:

∂L(W ,S)

∂S
=
∂MF (D,F TSW )

∂S

=
∑
i∈|V |

−diw
T
i + E

d
′
i
|FTSwi

[d
′
i]w

T
i

= F (ED
′ |FTSWD

′
−D)W T

, gradS

∂L(W ,S)

∂W
= STF (ED

′ |FTSWD
′
−D)

, gradW
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Algorithm 3 ALM algorithm for generalized explicit matrix factorization

Input: Co-occurrence matrix D, content matrix F , ALM step-size µ and maximum
number of outer iterations I

Output: Node embedding matrix W , feature embedding dictionary S
1: Initialize W and S randomly
2: for i = 1 to I do
3: repeat
4: W = W − µ · gradW

5: until Convergence
6: repeat
7: S = S − µ · gradS

8: until Convergence
9: end for

We denote gradW and gradS as the gradients of W and S in the loss func-
tion (7) respectively. Note that the expectation Ed

′
i|FTSwi

can be computed in

a closed form [9] as:

E
d
′
i,c|f

T
c Swi

[d
′
i,c] = Qi,cσ(fT

c Swi) (8)

where σ(x) = 1
1+e−x is the sigmoid function.

The algorithm of Alternating Minimization (ALM) is summarized in Algo-
rithm 3. The algorithm can be divided into solving two convex subproblems
(starting from line 3 and line 6 respectively), which guarantees that the opti-
mal solution of each subproblem can be reached with sublinear convergence rate
with a properly chosen step-size [15]. One can easily show that the objective (7)
descents monotonically. As a consequence, Algorithm 3 will converge due to the
lower bounded objective function (7).

The time complexity of one iteration in Algorithm 3 is O((nnz(F )d|V |)2),
where nnz(F ) is the number of non-zero elements in F . For datasets with sparse
node content, e.g., Cora, Citeseer, Facebook, etc., we implement fTc S in Equa-
tion (8) efficiently as a product of a sparse matrix with a dense matrix, which
reduces the complexity from O(|V |Nfd) to O(nnz(F )d).

4 Experiments

The proposed framework is independent of specific downstream tasks, therefore
in experiments, we test the model with different tasks including link prediction
and node classification. Below we first introduce the datasets we use and the
baseline methods that we compare to.

Datasets. We test our models on four benchmark datasets. The statistics of
datasets are summarized in Table 1. For the node classification task, we em-
ploy datasets of Citation Networks [18], where nodes represent papers while
edges represent citations. And each paper is described by a one-hot vector or a
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Table 1. Dataset statistics

Dataset # Classes # Nodes # Edges # Feature

Citeseer 6 3327 4732 3703
Cora 7 2708 5429 1433

Pubmed 3 19717 44338 500
Facebook - 4309 88234 1283

TFIDF word vector. For the link prediction task, we additionally include a so-
cial network dataset Facebook [7]. This dataset consists of 10 ego-networks from
the online social network Facebook, where nodes and edges represent users and
their relations respectively. Each user is described by users’ properties, which is
represented by a one-hot vector.

Baselines. For both tasks, we compare our method with network embedding
algorithms including DeepWalk [17], node2vec [3], TADW [22] and HSCA [25].
For the node classification task, we further include DMF [24], LANE [5] and
two neural network based methods, Planetoid [23] and GCN [6]. To measure
the performance of link prediction, we also evaluate our method against some
popular heuristic scores defined in node2vec [3]. Note that we do not consider
TriDNR [16] as a baseline for the reason that they use text description as node
content in citation networks, while in social networks such as Facebook, there is
no natural text description for each user, which prevents TriDNR from general-
izing to various types of networks. In addition, as MMDW [21] and DMF [24]
are both semi-supervised variants of TADW with similar performance in our
setting, we only compare our model with DMF for brevity.

Experimental Setup. For our model, the hyper-parameters are tuned on the
Citeseer dataset and kept on the others. The dimensionality of embedding is set
to 200 for the proposed methods. In terms of the optimization parameters, the
number of iterations is set to 200, the step-size in Algorithm 3 is set to 1e − 7.
The parameters in Algorithm 2 are set in consistency with DeepWalk, i.e., walk
length d = 40 with window size l = 5. We use APNE to denote our unsupervised
model of network embedding where the co-occurrence matrix is generated by
Algorithm 1, and APNE+label denotes the semi-supervised model which uses
Algorithm 2 to incorporate label context into the co-occurrence matrix. Unless
otherwise specified, in all the experiments, we use one-vs-rest logistic regression
as the classifier for the embedding based methods1.

4.1 Semi-supervised Node Classification

We first consider the semi-supervised node classification task on three citation
network datasets. To facilitate the comparison between our model and the base-
lines, we use the same partition scheme of training set and test set as in [23]. To
be concrete, we randomly sample 20 instances from each class as training data,
and 1000 instances from all samples in the rest of the dataset as test data.

1 Code available at https://github.com/lemmonation/APNE

https://github.com/lemmonation/APNE


12 Junliang Guo, Linli Xu, Xunpeng Huang, Enhong Chen

Table 2. Accuracy of semi-supervised node classification (in percentage). Upper and
lower rows correspond to unsupervised and semi-supervised embedding methods re-
spectively.

Method Citeseer Cora Pubmed

DeepWalk 41.5 67.3 66.4
node2vec 47.2 69.8 70.3
TADW 54.0 72.0 41.7
HSCA 47.7 65.4 41.7
APNE 72.6 79.3 81.5

DMF 65.5 58.5 59.3
LANE 60.3 65.2 -

Planetoid 67.3 73.4 76.7
GCN 70.3 81.5 79.0

APNE+label 72.8 79.6 82.1

The experimental results are reported in Table 2. In the comparison of un-
supervised models, the proposed APNE method learns embeddings from the
network structure and node content jointly in a unified matrix factorization
framework. As a consequence, APNE outperforms notably on all datasets with
improvement from 10.1% to 34.4%. Compared with TADW and HSCA, which
both incorporate network topology and text features of nodes in a matrix fac-
torization model simultaneously, our method is superior in the following: a) the
matrix we construct and factorize represents the network topology better as
proven in Section 3.1; b) the loss function we derive from SGNS is tailored for
representation learning.

Meanwhile, in the comparison of semi-supervised methods, the proposed
APNE model outperforms embedding based baselines significantly, illustrating
the promotion brought by explicitly manipulating the constructed matrix rather
than implicitly executing multi-hop interactions. In addition, LANE suffers from
extensive complexity both in time and space, which prevents it from being gen-
eralized to larger networks such as Pubmed. Although being slightly inferior to
GCN on the Cora dataset, considering that APNE is a feature learning method
independent of downstream tasks and classifiers, the competitive results against
the state-of-the-art CNN based method GCN justify that the node representa-
tions learned by APNE preserve the network information well.

In general, the proposed matrix factorization framework outperforms embed-
ding based baselines and performs competitive with the state-of-the-art CNN
based model, demonstrating the quality of embeddings learned by our methods
to represent the network from the aspects of content and structure. Between the
two variants of our proposed framework, APNE and APNE+label, the latter per-
forms consistently better on all datasets, indicating the benefits of incorporating
label context.

We further visualize the embeddings learned by our unsupervised model
APNE and two unsupervised embedding-based baselines on the Cora dataset
with a widely-used dimension reduction method t-SNE [11], and results are
shown in Figure 2. One can observe that different classes are better separated
by our model, and nodes in the same class are clustered more tightly.
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Fig. 2. t-SNE visualization of embeddings on Cora
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Fig. 3. Parameter effect of APNE on the node classification task (in percentage)

In order to test the sensitivity of our framework to hyper-parameters, we
choose different values of the negative sampling parameter k in Theorem 3 and
the number of iterations of label context sampling m in Algorithm 2 and evaluate
the model on Citeseer on the node classification task.

For each pair of parameters, we repeat the experiments 10 times and compute
the mean accuracy. Results are shown in Figure 3. The horizontal axis represents
different values of m. And m = 0 represents results when the model is purely
unsupervised, otherwise results are from semi-supervised models. The vertical
axis is the classification accuracy on Citeseer. Clearly, increasing m brings a
boost of the performance of the model, as we infer in Section 3.2. This justifies
the effectiveness of the approach we propose to incorporate the label context. In
addition, the performance of the proposed models with different values of k is
relatively stable.

4.2 Link Prediction

We further test our unsupervised model on the link prediction task. In link
prediction, a snap-shot of the current network is given, and we are going to
predict edges that will be added in the future. The experiment is set up as follows:
we first remove 50% of existing edges from the network randomly as positive
node pairs, while ensuring the residual network connected. To generate negative
examples, we randomly sample an equal number of node pairs that are not
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Table 3. Results of link prediction

Method
Citeseer Cora Pubmed Facebook

AUC MAP AUC MAP AUC MAP AUC MAP

Common Neighbor 0.567 0.781 0.616 0.797 0.561 0.778 0.797 0.882
Jaccard’s Coefficient 0.567 0.782 0.616 0.795 0.561 0.776 0.797 0.877

Adamic Adar 0.560 0.780 0.617 0.801 0.561 0.778 0.798 0.885
Preferential Attachment 0.675 0.721 0.679 0.705 0.863 0.852 0.675 0.675

DeepWalk 0.656 0.725 0.734 0.793 0.721 0.781 0.891 0.914
node2vec 0.502 0.731 0.723 0.790 0.728 0.785 0.888 0.911
TADW 0.914 0.936 0.854 0.878 0.592 0.620 0.909 0.921
HSCA 0.905 0.928 0.861 0.885 0.632 0.660 0.926 0.917

APNE 0.938 0.940 0.909 0.910 0.925 0.916 0.956 0.949

Table 4. Two randomly chosen node pairs from Cora dataset

Title Same Class Connected
Cosine Similarity
APNE TADW

A cooperative coevolutionary approach to function √ √
0.471 −0.002

Multi-parent reproduction in genetic algorithms
A Class of Algorithms for Identification in H∞ √

× 0.158 −0.129
On the Computational Power of Neural Nets

connected. Node representations are then learned based on the residual network.
While testing, given a node pair in the samples, we compute the cosine similarity
between their representation vectors as the edge’s score. Finally, Area Under
Curve (AUC) score and Mean Average Precision (MAP) are used to evaluate
the consistency between the labels and the similarity scores of the samples.

Results are summarized in Table 3. As shown in the table, our method APNE
outperforms all the baselines consistently with different evaluation metrics. We
take a lead of topology-only methods by a large margin, especially on sparser
networks such as Citeseer, which indicates the importance of leveraging node fea-
tures on networks with high sparsity. Again, we consistently outperform TADW
and HSCA which also consider text features of nodes.

The stable performance of our proposed APNE model on different datasets
justify that embeddings learned by jointly factorizing the co-occurrence matrix
D and node features F can effectively represent the network. More importantly,
the problem of sparsity can be alleviated by incorporating node features in a
unified framework.

4.3 Case Study

To further illustrate the effectiveness of APNE, we present some instances of link
prediction on the Cora dataset. We randomly choose 2 node pairs from all node
samples and compute the cosine similarity for each pair. Results are summa-
rized in Table 4. The superiority of APNE is obvious in the first instance, where
TADW gives a negative correlation to a positive pair. For this pair, although the
first paper is cited by the second one, their neighbors do not coincide. As a con-
sequence it is easy to wrongly separate these two nodes into different categories
if the structure information is not sufficiently exploited.
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As for the second instance, both papers belong to the Neural Networks class
but not connected in the network. Specifically, the first paper focuses on H-
Infinity methods in control theory while the second paper is about recurrent
neural networks, and there exist papers linking these two domains together in
the dataset. As a consequence, although these two nodes can hardly co-occur
in random walk sequences on the network, their features may overlap in the
dataset. Therefore, the pair of nodes will have a higher feature similarity than
the topology similarity. Thus by jointly considering the network topology and
the node features, our method gives a higher correlation score to the two nodes
that are disconnected but belong to the same category.

5 Conclusion

In this paper, we aim to learn a generalized network embedding preserving struc-
ture, content and label information simultaneously. We propose a unified matrix
factorization based framework which provides a flexible integration of network
structure, node content, as well as label information. We bridge the gap between
word embedding and network embedding by designing a method to generate the
co-occurrence matrix from the network, which is actually an approximation of
high-order proximities of nodes in the network. The experimental results on four
benchmark datasets show that the joint matrix factorization method we propose
brings substantial improvement over existing methods. One of our future direc-
tions would be to apply our framework to social recommendations to combine
the relationship between users with the corresponding feature representations.
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