Skip to main content

K-Connected Cores Computation in Large Dual Networks

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10827))

Included in the following conference series:

  • 3462 Accesses

Abstract

Computing \(k\text {-}core\)s is a fundamental and important graph problem, which can be applied in many areas, such as community detection, network visualization, and network topology analysis. Due to the complex relationship between different entities, dual graph widely exists in the applications. A dual graph contains a physical graph and a conceptual graph, both of which have the same vertex set. Given that there exist no previous studies on the \(k\text {-}core\) in dual graphs, we formulate a k-connected core (\(k\text {-}CCO\)) model in dual graphs. A \(k\text {-}CCO\) is a \(k\text {-}core\) in the conceptual graph, and also connected in the physical graph. Given a dual graph and an integer k, we propose a polynomial time algorithm for computing all \(k\text {-}CCO\)s. We also propose three algorithms for computing all maximum-connected cores (\(MCCO\)), which are the existing \(k\text {-}CCO\)s such that a \((k+1)\)-\(CCO\) does not exist. We conduct extensive experiments on six real-world datasets and several synthetic datasets. The experimental results demonstrate the effectiveness and efficiency of our proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.librec.net/datasets.html.

  2. 2.

    http://www.cse.psu.edu/~kxm85/software/GTgraph/.

References

  1. Alvarez-Hamelin, J.I., Dall’Asta, L., Barrat, A., Vespignani, A.: Large scale networks fingerprinting and visualization using the k-core decomposition. In: NIPS, pp. 41–50 (2006)

    Google Scholar 

  2. Asahiro, Y., Iwama, K., Tamaki, H., Tokuyama, T.: Greedily finding a dense subgraph. J. Algorithms 34(2), 203–221 (2000)

    Article  MathSciNet  Google Scholar 

  3. Batagelj, V., Zaversnik, M.: An o(m) algorithm for cores decomposition of networks. arXiv preprint arXiv:cs/0310049 (2003)

  4. Bonchi, F., Gullo, F., Kaltenbrunner, A., Volkovich, Y.: Core decomposition of uncertain graphs. In: KDD, pp. 1316–1325 (2014)

    Google Scholar 

  5. Chang, L., Yu, J.X., Qin, L., Lin, X., Liu, C., Liang, W.: Efficiently computing k-edge connected components via graph decomposition. In: SIGMOD, pp. 205–216 (2013)

    Google Scholar 

  6. Charikar, M.: Greedy approximation algorithms for finding dense components in a graph. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp. 84–95. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44436-X_10

    Chapter  MATH  Google Scholar 

  7. Cheng, J., Ke, Y., Chu, S., Özsu, M.T.: Efficient core decomposition in massive networks. In: ICDE, pp. 51–62 (2011)

    Google Scholar 

  8. Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in location-based social networks. In: KDD, pp. 1082–1090 (2011)

    Google Scholar 

  9. Conte, A., Firmani, D., Mordente, C., Patrignani, M., Torlone, R.: Fast enumeration of large k-plexes. In: KDD, pp. 115–124 (2017)

    Google Scholar 

  10. da Fontoura Costa, L., Oliveira Jr., O.N., Travieso, G., Rodrigues, F.A., Boas, P.R.V., Antiqueira, L., Viana, M.P., Rocha, L.E.C.: Analyzing and modeling real-world phenomena with complex networks: a survey of applications. Adv. Phys. 60(3), 329–412 (2011)

    Article  Google Scholar 

  11. Cui, W., Xiao, Y., Wang, H., Wang, W.: Local search of communities in large graphs. In: SIGMOD, pp. 991–1002 (2014)

    Google Scholar 

  12. Fang, Y., Cheng, R., Luo, S., Hu, J.: Effective community search for large attributed graphs. PVLDB 9(12), 1233–1244 (2016)

    Google Scholar 

  13. Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum flow algorithm and applications. SIAM J. Comput. 18(1), 30–55 (1989)

    Article  MathSciNet  Google Scholar 

  14. Giatsidis, C., Thilikos, D.M., Vazirgiannis, M.: D-cores: measuring collaboration of directed graphs based on degeneracy. In: ICDM, pp. 201–210 (2011)

    Google Scholar 

  15. Giatsidis, C., Thilikos, D.M., Vazirgiannis, M.: Evaluating cooperation in communities with the k-core structure. In: ASONAM, pp. 87–93 (2011)

    Google Scholar 

  16. Janson, S., Luczak, M.J.: A simple solution to the k-core problem. Random Struct. Algorithms 30(1–2), 50–62 (2007)

    Article  MathSciNet  Google Scholar 

  17. Khaouid, W., Barsky, M., Srinivasan, V., Thomo, A.: K-core decomposition of large networks on a single PC. PVLDB 9(1), 13–23 (2015)

    Google Scholar 

  18. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and shrinking diameters. TKDD 1(1), 2 (2007)

    Article  Google Scholar 

  19. Li, R.-H., Qin, L., Yu, J.X., Mao, R.: Influential community search in large networks. PVLDB 8(5), 509–520 (2015)

    Google Scholar 

  20. Li, R.-H., Yu, J.X., Mao, R.: Efficient core maintenance in large dynamic graphs. TKDE 26(10), 2453–2465 (2014)

    Google Scholar 

  21. Łuczak, T.: Size and connectivity of the k-core of a random graph. Discrete Math. 91(1), 61–68 (1991)

    Article  MathSciNet  Google Scholar 

  22. Ma, H., Zhou, D., Liu, C., Lyu, M.R., King, I.: Recommender systems with social regularization. In: Proceedings of the fourth ACM International Conference on Web Search and Data Mining, pp. 287–296 (2011)

    Google Scholar 

  23. Massa, P., Avesani, P.: Trust-aware recommender systems. In: RecSys, pp. 17–24 (2007)

    Google Scholar 

  24. Molloy, M.: Cores in random hypergraphs and Boolean formulas. Random Struct. Algorithms 27(1), 124–135 (2005)

    Article  MathSciNet  Google Scholar 

  25. Montresor, A., De Pellegrini, F., Miorandi, D.: Distributed k-core decomposition. TPDS 24(2), 288–300 (2013)

    Google Scholar 

  26. OBrien, M.P., Sullivan, B.D.: Locally estimating core numbers. In: ICDM, pp. 460–469 (2014)

    Google Scholar 

  27. Pittel, B., Spencer, J., Wormald, N.: Sudden emergence of a giantk-core in a random graph. J. Comb. Theory Ser. B 67(1), 111–151 (1996)

    Article  Google Scholar 

  28. Saríyüce, A.E., Gedik, B., Jacques-Silva, G., Wu, K.-L., Çatalyürek, Ü.V.: Streaming algorithms for k-core decomposition. PVLDB 6(6), 433–444 (2013)

    Google Scholar 

  29. Seidman, S.B.: Network structure and minimum degree. Social Netw. 5(3), 269–287 (1983)

    Article  MathSciNet  Google Scholar 

  30. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: KDD, pp. 990–998 (2008)

    Google Scholar 

  31. Wang, J., Cheng, J.: Truss decomposition in massive networks. PVLDB 5(9), 812–823 (2012)

    Google Scholar 

  32. Wen, D., Qin, L., Zhang, Y., Lin, X., Yu, J.X.: I/o efficient core graph decomposition at web scale. In: ICDE, pp. 133–144. IEEE (2016)

    Google Scholar 

  33. Wu, Y., Jin, R., Zhu, X., Zhang,X.: Finding dense and connected subgraphs in dual networks. In: ICDE, pp. 915–926 (2015)

    Google Scholar 

Download references

Acknowledgments

The work is supported by the National Key R&D Program (No. 2017YFB1400102, No. 2016YFB1000602), NSFC (No. 61572295), and SDNSF (No. ZR2017ZB0420).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizhen Cui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yue, L., Wen, D., Cui, L., Qin, L., Zheng, Y. (2018). K-Connected Cores Computation in Large Dual Networks. In: Pei, J., Manolopoulos, Y., Sadiq, S., Li, J. (eds) Database Systems for Advanced Applications. DASFAA 2018. Lecture Notes in Computer Science(), vol 10827. Springer, Cham. https://doi.org/10.1007/978-3-319-91452-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91452-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91451-0

  • Online ISBN: 978-3-319-91452-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics