Abstract
Computing \(k\text {-}core\)s is a fundamental and important graph problem, which can be applied in many areas, such as community detection, network visualization, and network topology analysis. Due to the complex relationship between different entities, dual graph widely exists in the applications. A dual graph contains a physical graph and a conceptual graph, both of which have the same vertex set. Given that there exist no previous studies on the \(k\text {-}core\) in dual graphs, we formulate a k-connected core (\(k\text {-}CCO\)) model in dual graphs. A \(k\text {-}CCO\) is a \(k\text {-}core\) in the conceptual graph, and also connected in the physical graph. Given a dual graph and an integer k, we propose a polynomial time algorithm for computing all \(k\text {-}CCO\)s. We also propose three algorithms for computing all maximum-connected cores (\(MCCO\)), which are the existing \(k\text {-}CCO\)s such that a \((k+1)\)-\(CCO\) does not exist. We conduct extensive experiments on six real-world datasets and several synthetic datasets. The experimental results demonstrate the effectiveness and efficiency of our proposed algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alvarez-Hamelin, J.I., Dall’Asta, L., Barrat, A., Vespignani, A.: Large scale networks fingerprinting and visualization using the k-core decomposition. In: NIPS, pp. 41–50 (2006)
Asahiro, Y., Iwama, K., Tamaki, H., Tokuyama, T.: Greedily finding a dense subgraph. J. Algorithms 34(2), 203–221 (2000)
Batagelj, V., Zaversnik, M.: An o(m) algorithm for cores decomposition of networks. arXiv preprint arXiv:cs/0310049 (2003)
Bonchi, F., Gullo, F., Kaltenbrunner, A., Volkovich, Y.: Core decomposition of uncertain graphs. In: KDD, pp. 1316–1325 (2014)
Chang, L., Yu, J.X., Qin, L., Lin, X., Liu, C., Liang, W.: Efficiently computing k-edge connected components via graph decomposition. In: SIGMOD, pp. 205–216 (2013)
Charikar, M.: Greedy approximation algorithms for finding dense components in a graph. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp. 84–95. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44436-X_10
Cheng, J., Ke, Y., Chu, S., Özsu, M.T.: Efficient core decomposition in massive networks. In: ICDE, pp. 51–62 (2011)
Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in location-based social networks. In: KDD, pp. 1082–1090 (2011)
Conte, A., Firmani, D., Mordente, C., Patrignani, M., Torlone, R.: Fast enumeration of large k-plexes. In: KDD, pp. 115–124 (2017)
da Fontoura Costa, L., Oliveira Jr., O.N., Travieso, G., Rodrigues, F.A., Boas, P.R.V., Antiqueira, L., Viana, M.P., Rocha, L.E.C.: Analyzing and modeling real-world phenomena with complex networks: a survey of applications. Adv. Phys. 60(3), 329–412 (2011)
Cui, W., Xiao, Y., Wang, H., Wang, W.: Local search of communities in large graphs. In: SIGMOD, pp. 991–1002 (2014)
Fang, Y., Cheng, R., Luo, S., Hu, J.: Effective community search for large attributed graphs. PVLDB 9(12), 1233–1244 (2016)
Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum flow algorithm and applications. SIAM J. Comput. 18(1), 30–55 (1989)
Giatsidis, C., Thilikos, D.M., Vazirgiannis, M.: D-cores: measuring collaboration of directed graphs based on degeneracy. In: ICDM, pp. 201–210 (2011)
Giatsidis, C., Thilikos, D.M., Vazirgiannis, M.: Evaluating cooperation in communities with the k-core structure. In: ASONAM, pp. 87–93 (2011)
Janson, S., Luczak, M.J.: A simple solution to the k-core problem. Random Struct. Algorithms 30(1–2), 50–62 (2007)
Khaouid, W., Barsky, M., Srinivasan, V., Thomo, A.: K-core decomposition of large networks on a single PC. PVLDB 9(1), 13–23 (2015)
Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and shrinking diameters. TKDD 1(1), 2 (2007)
Li, R.-H., Qin, L., Yu, J.X., Mao, R.: Influential community search in large networks. PVLDB 8(5), 509–520 (2015)
Li, R.-H., Yu, J.X., Mao, R.: Efficient core maintenance in large dynamic graphs. TKDE 26(10), 2453–2465 (2014)
Łuczak, T.: Size and connectivity of the k-core of a random graph. Discrete Math. 91(1), 61–68 (1991)
Ma, H., Zhou, D., Liu, C., Lyu, M.R., King, I.: Recommender systems with social regularization. In: Proceedings of the fourth ACM International Conference on Web Search and Data Mining, pp. 287–296 (2011)
Massa, P., Avesani, P.: Trust-aware recommender systems. In: RecSys, pp. 17–24 (2007)
Molloy, M.: Cores in random hypergraphs and Boolean formulas. Random Struct. Algorithms 27(1), 124–135 (2005)
Montresor, A., De Pellegrini, F., Miorandi, D.: Distributed k-core decomposition. TPDS 24(2), 288–300 (2013)
OBrien, M.P., Sullivan, B.D.: Locally estimating core numbers. In: ICDM, pp. 460–469 (2014)
Pittel, B., Spencer, J., Wormald, N.: Sudden emergence of a giantk-core in a random graph. J. Comb. Theory Ser. B 67(1), 111–151 (1996)
Saríyüce, A.E., Gedik, B., Jacques-Silva, G., Wu, K.-L., Çatalyürek, Ü.V.: Streaming algorithms for k-core decomposition. PVLDB 6(6), 433–444 (2013)
Seidman, S.B.: Network structure and minimum degree. Social Netw. 5(3), 269–287 (1983)
Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of academic social networks. In: KDD, pp. 990–998 (2008)
Wang, J., Cheng, J.: Truss decomposition in massive networks. PVLDB 5(9), 812–823 (2012)
Wen, D., Qin, L., Zhang, Y., Lin, X., Yu, J.X.: I/o efficient core graph decomposition at web scale. In: ICDE, pp. 133–144. IEEE (2016)
Wu, Y., Jin, R., Zhu, X., Zhang,X.: Finding dense and connected subgraphs in dual networks. In: ICDE, pp. 915–926 (2015)
Acknowledgments
The work is supported by the National Key R&D Program (No. 2017YFB1400102, No. 2016YFB1000602), NSFC (No. 61572295), and SDNSF (No. ZR2017ZB0420).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Yue, L., Wen, D., Cui, L., Qin, L., Zheng, Y. (2018). K-Connected Cores Computation in Large Dual Networks. In: Pei, J., Manolopoulos, Y., Sadiq, S., Li, J. (eds) Database Systems for Advanced Applications. DASFAA 2018. Lecture Notes in Computer Science(), vol 10827. Springer, Cham. https://doi.org/10.1007/978-3-319-91452-7_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-91452-7_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-91451-0
Online ISBN: 978-3-319-91452-7
eBook Packages: Computer ScienceComputer Science (R0)