Skip to main content

Graph Clustering with Local Density-Cut

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10827))

Included in the following conference series:

Abstract

In this paper, we introduce a new graph clustering algorithm, called Dcut. The basic idea is to envision the graph clustering as a local density-cut problem. To identify meaningful communities in a graph, a density-connected tree is first constructed in a local fashion. Building upon the local intuitive density-connected tree, Dcut allows partitioning a graph into multiple densely tight-knit clusters effectively and efficiently. We have demonstrated that our method has several attractive benefits: (a) Dcut provides an intuitive criterion to evaluate the goodness of a graph clustering in a more precise way; (b) Building upon the density-connected tree, Dcut allows identifying high-quality clusters; (c) The density-connected tree also provides a connectivity map of vertices in a graph from a local density perspective. We systematically evaluate our new clustering approach on synthetic and real-world data sets to demonstrate its good performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Harris, M.A.: Gene ontology: tool for the unification of biology. Nat. Genet. 25(1), 25 (2000)

    Article  Google Scholar 

  2. Böhm, C., Plant, C., Shao, J., Yang, Q.: Clustering by synchronization. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 583–592 (2010)

    Google Scholar 

  3. Brohée, S., Faust, K., Lima-Mendez, G., Vanderstocken, G., Van Helden, J.: Network analysis tools: from biological networks to clusters and pathways. Nat. Protoc. 3(10), 1616–1629 (2008)

    Article  Google Scholar 

  4. Dongen, S.: A cluster algorithm for graphs. Technical report, Amsterdam (2000)

    Google Scholar 

  5. Evans, T.S.: Clique graphs and overlapping communities. J. Stat. Mech. Theory Exp. 12, P12037 (2010)

    Article  Google Scholar 

  6. Flake, G.W., Tarjan, R.E., Tsioutsiouliklis, K.: Graph clustering and minimum cut trees. Internet Math. 1(4), 385–408 (2004)

    Article  MathSciNet  Google Scholar 

  7. Hagen, L., Kahng, A.B.: New spectral methods for ratio cut partitioning and clustering. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 11(9), 1074–1085 (1992)

    Article  Google Scholar 

  8. Hajiabadi, M., Zare, H., Bobarshad, H.: IEDC: an integrated approach for overlapping and non-overlapping community detection. Knowl.-Based Syst. 123, 188–199 (2017)

    Article  Google Scholar 

  9. Hennig, C., Hausdorf, B.: Design of dissimilarity measures: a new dissimilarity between species distribution areas. In: Batagelj, V., Bock, H.H., Ferligoj, A., Ẑiberna, A. (eds.) Data Science and Classification. STUDIES CLASS, pp. 29–37. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-34416-0_4

    Chapter  Google Scholar 

  10. Karypis, G., Kumar, V.: Multilevelk-way partitioning scheme for irregular graphs. J. Parallel Distrib. Comput. 48(1), 96–129 (1998)

    Article  Google Scholar 

  11. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

    Article  MathSciNet  Google Scholar 

  12. Girvan, M., Newman, M.E.: Community structure in social and biological networks. Proc. Nat. Acad. Sci. 99(12), 7821–7826 (2002)

    Article  MathSciNet  Google Scholar 

  13. Newman, M.E.: Modularity and community structure in networks. Proc. Nat. Acad. Sci. 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  14. Prim, R.C.: Shortest connection networks and some generalizations. Bell Labs Tech. J. 36(6), 1389–1401 (1957)

    Article  Google Scholar 

  15. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66(336), 846–850 (1971)

    Article  Google Scholar 

  16. Schaeffer, S.E.: Graph clustering. Comput. Sci. Rev. 1(1), 27–64 (2007)

    Article  Google Scholar 

  17. Shao, J.: Synchronization on Data Mining: A Universal Concept for Knowledge Discovery. LAP LAMBERT Academic Publishing, Saarbrücken (2012)

    Google Scholar 

  18. Shao, J., He, X., Yang, Q., Plant, C., Böhm, C.: Robust synchronization-based graph clustering. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) PAKDD 2013. LNCS (LNAI), vol. 7818, pp. 249–260. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37453-1_21

    Chapter  Google Scholar 

  19. Shao, J., Han, Z., Yang, Q., Zhou, T.: Community detection based on distance dynamics. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1075–1084 (2015)

    Google Scholar 

  20. Shao, J., Yang, Q., Dang, H.V., Schmidt, B., Kramer, S.: Scalable clustering by iterative partitioning and point attractor representation. ACM Trans. Knowl. Discov. Data 11(1), 5 (2016)

    Article  Google Scholar 

  21. Shao, J., Wang, X., Yang, Q., Plant, C., Böhm, C.: Synchronization-based scalable subspace clustering of high-dimensional data. Knowl. Inf. Syst. 52(1), 83–111 (2017)

    Article  Google Scholar 

  22. Shao, J., Huang, F., Yang, Q., Luo, G.: Robust prototype-based learning on data streams. IEEE Trans. Knowl. Data Eng. 30(5), 978–991 (2018)

    Article  Google Scholar 

  23. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  24. Strehl, A., Ghosh, J.: Cluster ensembles: a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2002)

    MathSciNet  MATH  Google Scholar 

  25. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-worldnetworks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

  26. Wu, Z., Leahy, R.: An optimal graph theoretic approach to data clustering: theory and its application to image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1101–1113 (1993)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (61403062, 41601025, 61433014), Science-Technology Foundation for Young Scientist of SiChuan Province (2016JQ0007), State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering (2017490211), National key research and development program (2016YFB0502300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junming Shao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shao, J., Yang, Q., Zhang, Z., Liu, J., Kramer, S. (2018). Graph Clustering with Local Density-Cut. In: Pei, J., Manolopoulos, Y., Sadiq, S., Li, J. (eds) Database Systems for Advanced Applications. DASFAA 2018. Lecture Notes in Computer Science(), vol 10827. Springer, Cham. https://doi.org/10.1007/978-3-319-91452-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91452-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91451-0

  • Online ISBN: 978-3-319-91452-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics