Skip to main content

Multi-metric Graph Query Performance Prediction

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10827))

Included in the following conference series:

Abstract

We propose a general framework for predicting graph query performance with respect to three performance metrics: execution time, query answer quality, and memory consumption. The learning framework generates and makes use of informative statistics from data and query structure and employs a multi-label regression model to predict the multi-metric query performance. We apply the framework to study two common graph query classes—reachability and graph pattern matching; the two classes differ significantly in their query complexity. For both query classes, we develop suitable performance models and learning algorithms to predict the performance. We demonstrate the efficacy of our framework via experiments on real-world information and social networks. Furthermore, by leveraging the framework, we propose a novel workload optimization algorithm and show that it improves the efficiency of workload management by 54% on average.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://snap.stanford.edu/data/soc-pokec.html.

  2. 2.

    http://wiki.dbpedia.org/.

  3. 3.

    http://scikit-learn.org.

References

  1. Akdere, M., Çetintemel, U., Riondato, M., Upfal, E., Zdonik, S.B.: Learning-based query performance modeling and prediction. In: ICDE, pp. 390–401 (2012)

    Google Scholar 

  2. Arias, M., Fernández, J.D., Martínez-Prieto, M.A., de la Fuente, P.: An empirical study of real-world SPARQL queries. arXiv preprint arXiv:1103.5043 (2011)

  3. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: KDD, pp. 785–794 (2016)

    Google Scholar 

  4. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. J. Comput. Syst. Sci. 66(4), 614–656 (2003)

    Article  MathSciNet  Google Scholar 

  5. Fan, W., Li, J., Ma, S., Tang, N., Wu, Y.: Adding regular expressions to graph reachability and pattern queries. In: ICDE, pp. 39–50 (2011)

    Google Scholar 

  6. Guo, Q., White, R.W., Dumais, S.T., Wang, J., Anderson, B.: Predicting query performance using query, result, and user interaction features. In: RIAO (2010)

    Google Scholar 

  7. Hasan, R.: Predicting SPARQL query performance and explaining linked data. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 795–805. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07443-6_53

    Chapter  Google Scholar 

  8. Hasan, R., Gandon, F.: A machine learning approach to SPARQL query performance prediction. In: WI-IAT (2014)

    Google Scholar 

  9. Hauff, C., Hiemstra, D., de Jong, F.: A survey of pre-retrieval query performance predictors. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, pp. 1419–1420. ACM (2008)

    Google Scholar 

  10. Ilyas, I.F., Beskales, G., Soliman, M.A.: A survey of top-k query processing techniques in relational database systems. CSUR 40, 11 (2008)

    Article  Google Scholar 

  11. Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: an online algorithm for skyline queries. In: VLDB, pp. 275–286 (2002)

    Google Scholar 

  12. Lu, J., Lin, C., Wang, W., Li, C., Wang, H.: String similarity measures and joins with synonyms. In: SIGMOD (2013)

    Google Scholar 

  13. Lu, X., Bressan, S.: Sampling connected induced subgraphs uniformly at random. In: Ailamaki, A., Bowers, S. (eds.) SSDBM 2012. LNCS, vol. 7338, pp. 195–212. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31235-9_13

    Chapter  Google Scholar 

  14. Ma, S., Cao, Y., Fan, W., Huai, J., Wo, T.: Capturing topology in graph pattern matching. VLDB 5, 310–321 (2011)

    MATH  Google Scholar 

  15. Morsey, M., Lehmann, J., Auer, S., Ngonga Ngomo, A.-C.: DBpedia SPARQL benchmark – performance assessment with real queries on real data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 454–469. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25073-6_29

    Chapter  Google Scholar 

  16. Namaki, M.H., Lin, P., Wu, Y.: Event pattern discovery by keywords in graph streams. In: IEEE Big Data (2017)

    Google Scholar 

  17. Namaki, M.H., Chowdhury, R.R., Islam, M.R., Doppa, J.R., Wu, Y.: Learning to speed up query planning in graph databases. In: ICAPS (2017)

    Google Scholar 

  18. Namaki, M.H., Sasani, K., Wu, Y., Ge, T.: BEAMS: bounded event detection in graph streams. In: ICDE, pp. 1387–1388 (2017)

    Google Scholar 

  19. Namaki, M.H., Sasani, K., Wu, Y., Gebremedhin, A.H.: Performance prediction for graph queries. In: NDA (2017)

    Google Scholar 

  20. Namaki, M.H., Wu, Y., Song, Q., Lin, P., Ge, T.: Discovering graph temporal association rules. In: CIKM, pp. 1697–1706 (2017)

    Google Scholar 

  21. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in database systems. TODS 30, 41–82 (2005)

    Article  Google Scholar 

  22. Wu, W., Chi, Y., Zhu, S., Tatemura, J., Hacigümüs, H., Naughton, J.F.: Predicting query execution time: Are optimizer cost models really unusable? In: ICDE, pp. 1081–1092 (2013)

    Google Scholar 

  23. Xu, Z., Hogan, C., Bauer, R.: Greedy is not enough: an efficient batch mode active learning algorithm. In: ICDMW, pp. 326–331 (2009)

    Google Scholar 

  24. Yang, S., Han, F., Wu, Y., Yan, X.: Fast top-k search in knowledge graphs. In: ICDE (2016)

    Google Scholar 

  25. Yang, S., Wu, Y., Sun, H., Yan, X.: Schemaless and structureless graph querying. VLDB 7, 565–576 (2014)

    Google Scholar 

  26. Zhang, W.E., Sheng, Q.Z., Taylor, K., Qin, Y., Yao, L.: Learning-based SPARQL query performance prediction. In: Cellary, W., Mokbel, M.F., Wang, J., Wang, H., Zhou, R., Zhang, Y. (eds.) WISE 2016. LNCS, vol. 10041, pp. 313–327. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48740-3_23

    Chapter  Google Scholar 

Download references

Acknowledgments

Sasani and Gebremedhin are supported in part by NSF CAREER award IIS-1553528. Namaki and Wu are supported in part by NSF IIS-1633629 and Huawei Innovation Research Program (HIRP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keyvan Sasani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sasani, K., Namaki, M.H., Wu, Y., Gebremedhin, A.H. (2018). Multi-metric Graph Query Performance Prediction. In: Pei, J., Manolopoulos, Y., Sadiq, S., Li, J. (eds) Database Systems for Advanced Applications. DASFAA 2018. Lecture Notes in Computer Science(), vol 10827. Springer, Cham. https://doi.org/10.1007/978-3-319-91452-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91452-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91451-0

  • Online ISBN: 978-3-319-91452-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics