Skip to main content

Discovering Strong Communities with User Engagement and Tie Strength

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10827))

Included in the following conference series:

  • 3897 Accesses

Abstract

In this paper, we propose and study a novel cohesive subgraph model, named (\(k\),\(s\))-core, which requires each user to have at least k familiars or friends (not just acquaintances) in the subgraph. The model considers both user engagement and tie strength to discover strong communities. We compare the (\(k\),\(s\))-core model with \(k\)-core and \(k\)-truss theoretically and experimentally. We propose efficient algorithms to compute the (\(k\),\(s\))-core and decompose the graph by a particular sub-model \(k\)-fami. Extensive experiments show (1) our (\(k\),\(s\))-core and \(k\)-fami are effective cohesive subgraph models and (2) the (\(k\),\(s\))-core computation and \(k\)-fami decomposition are efficient on various real-life social networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akbas, E., Zhao, P.: Truss-based community search: a truss-equivalence based indexing approach. PVLDB 10(11), 1298–1309 (2017)

    Google Scholar 

  2. Batagelj, V., Zaversnik, M.: An O(m) algorithm for cores decomposition of networks. CoRR, cs.DS/0310049 (2003)

    Google Scholar 

  3. Batagelj, V., Zaversnik, M.: Fast algorithms for determining (generalized) core groups in social networks. Adv. Data Anal. Classif. 5(2), 129–145 (2011)

    Article  MathSciNet  Google Scholar 

  4. Bhawalkar, K., Kleinberg, J., Lewi, K., Roughgarden, T., Sharma, A.: Preventing unraveling in social networks: the anchored k-core problem. SIAM J. Discrete Math. 29(3), 1452–1475 (2015)

    Article  MathSciNet  Google Scholar 

  5. Bron, C., Kerbosch, J.: Finding all cliques of an undirected graph (algorithm 457). Commun. ACM 16(9), 575–576 (1973)

    Article  Google Scholar 

  6. Cohen, J.: Trusses: cohesive subgraphs for social network analysis. National Security Agency Technical Report, p. 16 (2008)

    Google Scholar 

  7. Granovetter, M.S.: The strength of weak ties. Am. J. Sociol. 78(6), 1360–1380 (1973)

    Article  Google Scholar 

  8. Huang, X., Cheng, H., Qin, L., Tian, W., Yu, J.X.: Querying k-truss community in large and dynamic graphs. In: SIGMOD, pp. 1311–1322 (2014)

    Google Scholar 

  9. Huang, X., Lakshmanan, L.V.S.: Attribute-driven community search. PVLDB 10(9), 949–960 (2017)

    Google Scholar 

  10. Khaouid, W., Barsky, M., Venkatesh, S., Thomo, A.: K-core decomposition of large networks on a single PC. PVLDB 9(1), 13–23 (2015)

    Google Scholar 

  11. Lee, P., Lakshmanan, L.V.S., Milios, E.E.: CAST: a context-aware story-teller for streaming social content. In: CIKM, pp. 789–798 (2014)

    Google Scholar 

  12. Luce, R.D., Perry, A.D.: A method of matrix analysis of group structure. Psychometrika 14(2), 95–116 (1949)

    Article  MathSciNet  Google Scholar 

  13. Rotabi, R., Kamath, K., Kleinberg, J.M., Sharma, A.: Detecting strong ties using network motifs. In: WWW, pp. 983–992 (2017)

    Google Scholar 

  14. Seidman, S.B.: Network structure and minimum degree. Soc. Netw. 5(3), 269–287 (1983)

    Article  MathSciNet  Google Scholar 

  15. Seidman, S.B., Foster, B.L.: A graph-theoretic generalization of the clique concept. J. Math. Sociol. 6(1), 139–154 (1978)

    Article  MathSciNet  Google Scholar 

  16. Shao, Y., Chen, L., Cui, B.: Efficient cohesive subgraphs detection in parallel. In: SIGMOD, pp. 613–624 (2014)

    Google Scholar 

  17. Ugander, J., Backstrom, L., Marlow, C., Kleinberg, J.: Structural diversity in social contagion. PNAS 109(16), 5962–5966 (2012)

    Article  Google Scholar 

  18. Wang, J., Cheng, J.: Truss decomposition in massive networks. PVLDB 5(9), 812–823 (2012)

    Google Scholar 

  19. Zhang, F., Zhang, W., Zhang, Y., Qin, L., Lin, X.: OLAK: an efficient algorithm to prevent unraveling in social networks. PVLDB 10(6), 649–660 (2017)

    Google Scholar 

  20. Zhang, F., Zhang, Y., Qin, L., Zhang, W., Lin, X.: Finding critical users for social network engagement: the collapsed k-core problem. In: AAAI, pp. 245–251 (2017)

    Google Scholar 

  21. Zhang, F., Zhang, Y., Qin, L., Zhang, W., Lin, X.: When engagement meets similarity: efficient (k, r)-core computation on social networks. PVLDB 10(10), 998–1009 (2017)

    Google Scholar 

  22. Zhang, Y., Yu, J.X., Zhang, Y., Qin, L.: A fast order-based approach for core maintenance. In: ICDE, pp. 337–348 (2017)

    Google Scholar 

  23. Zhao, F., Tung, A.K.H.: Large scale cohesive subgraphs discovery for social network visual analysis. PVLDB 6(2), 85–96 (2012)

    Google Scholar 

Download references

Acknowledgments

Fan Zhang and Long Yuan are supported by Huawei YBN2017100007. Ying Zhang is supported by ARC FT170100128 and DP180103096. Lu Qin is supported by ARC DP160101513. Xuemin Lin is supported by NSFC 61672235, ARC DP170101628, DP180103096 and Huawei YBN2017100007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Yuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, F., Yuan, L., Zhang, Y., Qin, L., Lin, X., Zhou, A. (2018). Discovering Strong Communities with User Engagement and Tie Strength. In: Pei, J., Manolopoulos, Y., Sadiq, S., Li, J. (eds) Database Systems for Advanced Applications. DASFAA 2018. Lecture Notes in Computer Science(), vol 10827. Springer, Cham. https://doi.org/10.1007/978-3-319-91452-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91452-7_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91451-0

  • Online ISBN: 978-3-319-91452-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics