Abstract
For time series classification (TSC) problem, many studies focus on elastic distance measures for comparing time series and complete the task with the help of Nearest Neighbour (NN) classifier. This is mainly due to the fact that the order of variables is a crucial factor for time series. Unlike the NN classifier only considers one training sample, in this paper, we propose an improved Nearest Subspace (NS) classifier to classify new time series. By adding a discriminative regularization item, the improved NS classifier takes full advantage of all training time series of one class. Two kinds of discriminative regularization items are employed in our method. One is directly calculated based on Euclidean distance of time series. For the other, we obtain the regularization items from a lower-dimensional subspace. Two well-known dimensional reduction methods, Generalized Eigenvector Method (GEM) and Local Fisher Discriminant Analysis (LFDA), are employed to complete this task. Furthermore, we combine these improved NS classifiers through ensemble schemes to accommodate different time series datasets. Through extensive experiments on all UCR and UEA datasets, we demonstrate that the proposed method can gain better performance than NN classifiers with different elastic distance measures and other classifiers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdi, H.: Singular value decomposition (SVD) and generalized singular value decomposition. In: Encyclopedia of Measurement and Statistics, pp. 907–912. Sage, Thousand Oaks (2007)
Bagnall, A., Lines, J., Bostrom, A., Large, J., Keogh, E.: The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Min. Knowl. Disc. 31(3), 606–660 (2017)
Bagnall, A., Lines, J., Hills, J., Bostrom, A.: Time-series classification with COTE: the collective of transformation-based ensembles. IEEE Trans. Knowl. Data Eng. 27(9), 2522–2535 (2015)
Batista, G.E., Wang, X., Keogh, E.J.: A complexity-invariant distance measure for time series. In: Proceedings of the 2011 SIAM International Conference on Data Mining, pp. 699–710. SIAM (2011)
Chen, L., Ng, R.: On the marriage of Lp-norms and edit distance. In: Proceedings of the Thirtieth International Conference on Very Large Data Bases, vol. 30, pp. 792–803. VLDB Endowment (2004)
Chen, L., Özsu, M.T., Oria, V.: Robust and fast similarity search for moving object trajectories. In: Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, pp. 491–502. ACM (2005)
Chi, Y., Porikli, F.: Connecting the dots in multi-class classification: from nearest subspace to collaborative representation. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3602–3609. IEEE (2012)
Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7(Jan), 1–30 (2006)
Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.: Querying and mining of time series data: experimental comparison of representations and distance measures. Proc. VLDB Endow. 1(2), 1542–1552 (2008)
Fuhry, M., Reichel, L.: A new Tikhonov regularization method. Numerical Algorithms 59(3), 433–445 (2012)
Górecki, T., Łuczak, M.: Using derivatives in time series classification. Data Min. Knowl. Disc. 26, 1–22 (2013)
Górecki, T., Łuczak, M.: Non-isometric transforms in time series classification using DTW. Knowl.-Based Syst. 61, 98–108 (2014)
Gustavo, E., Batista, A., Keogh, E.J., Tataw, O.M., Vinícius, M., de Souza, A., et al.: CID: an efficient complexity-invariant distance for time series. Data Min. Knowl. Disc. 28(3), 634 (2014)
Jeong, Y.S., Jeong, M.K., Omitaomu, O.A.: Weighted dynamic time warping for time series classification. Pattern Recogn. 44(9), 2231–2240 (2011)
Karampatziakis, N., Mineiro, P.: Discriminative features via generalized eigenvectors. In: Proceedings of the 31st International Conference on Machine Learning, ICML 2014, pp. 494–502. JMLR.org (2014)
Keogh, E.: Exact indexing of dynamic time warping. In: Proceedings of the 28th International Conference on Very Large Data Bases, pp. 406–417. VLDB Endowment (2002)
Keogh, E.J., Pazzani, M.J.: Derivative dynamic time warping. In: Proceedings of the 2001 SIAM International Conference on Data Mining, pp. 1–11. SIAM (2001)
Lee, K.C., Ho, J., Kriegman, D.J.: Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 684–698 (2005)
Li, W., Tramel, E.W., Prasad, S., Fowler, J.E.: Nearest regularized subspace for hyperspectral classification. IEEE Trans. Geosci. Remote Sens. 52(1), 477–489 (2014)
Lines, J., Bagnall, A.: Time series classification with ensembles of elastic distance measures. Data Min. Knowl. Disc. 29(3), 565–592 (2015)
Liu, Y., Ge, S.S., Li, C., You, Z.: \(k\)-NS: a classifier by the distance to the nearest subspace. IEEE Trans. Neural Netw. 22(8), 1256–1268 (2011)
Marteau, P.F.: Time warp edit distance with stiffness adjustment for time series matching. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 306–318 (2009)
Pedagadi, S., Orwell, J., Velastin, S., Boghossian, B.: Local fisher discriminant analysis for pedestrian re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3318–3325 (2013)
Platt, J.C., Toutanova, K., Yih, W.: Translingual document representations from discriminative projections. In: Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pp. 251–261. Association for Computational Linguistics (2010)
Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westover, B., Zhu, Q., Zakaria, J., Keogh, E.: Addressing big data time series: mining trillions of time series subsequences under dynamic time warping. ACM Trans. Knowl. Disc. Data (TKDD) 7(3), 10 (2013)
Ratanamahatana, C.A., Keogh, E.: Three myths about dynamic time warping data mining. In: Proceedings of the 2005 SIAM International Conference on Data Mining, pp. 506–510. SIAM (2005)
Stefan, A., Athitsos, V., Das, G.: The move-split-merge metric for time series. IEEE Trans. Knowl. Data Eng. 25(6), 1425–1438 (2013)
Sugiyama, M.: Local fisher discriminant analysis for supervised dimensionality reduction. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 905–912. ACM (2006)
Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. In: Advances in Neural Information Processing Systems, pp. 1601–1608 (2005)
Acknowledgements
This work is supported by the National Natural Science Foundation of China [grant numbers 61772289 and 61702285].
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendix
Appendix
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Zhang, Z., Wen, Y., Zhang, Y., Yuan, X. (2018). Nearest Subspace with Discriminative Regularization for Time Series Classification. In: Pei, J., Manolopoulos, Y., Sadiq, S., Li, J. (eds) Database Systems for Advanced Applications. DASFAA 2018. Lecture Notes in Computer Science(), vol 10827. Springer, Cham. https://doi.org/10.1007/978-3-319-91452-7_38
Download citation
DOI: https://doi.org/10.1007/978-3-319-91452-7_38
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-91451-0
Online ISBN: 978-3-319-91452-7
eBook Packages: Computer ScienceComputer Science (R0)