Abstract
The prevalence of mobile devices and the increasing popularity of location-based social networks (LBSNs) generate a large volume of user mobility data. As a result, POI recommendation systems, which play a vital role in connecting users and POIs, have received extensive attention from both research and industry communities in the past few years. The challenges of POI recommendation come from the very sparse user check-in records with only positive feedback and how to integrate heterogeneous information of users and POIs. The state-of-the-art methods usually exploit the social influence from friends and geographical influence from neighboring POIs for recommendation. However, there are two drawbacks that hinder their performance. First, they cannot model the different degree of influence from different friends to a user. Second, they ignore the user check-ins as context information for preference modeling in the collaborative filtering framework.
To address the limitations of existing methods, we propose a Context Graph Attention (CGA) model, which can integrate context information encoded in different context graphs with the attention mechanism for POI recommendation. CGA first uses two context-aware attention networks to learn the influence weights of different friends and neighboring POIs respectively. At the same time, it applies a dual attention network, which considers the mutual influence of context POIs for a user and the context users for a POI, to learn the influence weights of different context vertices in the user-POI context graph. A multi-layer perceptron integrates the context vectors of users and POIs for estimating the visiting probability of a user to a POI. To the best of our knowledge, this is the first work that applies the attention mechanism for POI recommendation. Extensive experiments on two public check-in data sets show that CGA can outperform the state-of-the-art methods as well as other attentive collaborative filtering methods substantially.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: ICLR (2015)
Bao, J., Zheng, Y., Wilkie, D., Mokbel, M.: Recommendations in location-based social networks: a survey. GeoInformatica 19(3), 525–565 (2015)
Chen, J., Zhang, H., He, X., Nie, L., Liu, W., Chua, T.S.: Attentive collaborative filtering: multimedia recommendation with item-and component-level attention. In: SIGIR, pp. 335–344 (2017)
Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in location-based social networks. In: SIGKDD, pp. 1082–1090 (2011)
Feng, S., Li, X., Zeng, Y., Cong, G., Chee, Y.M., Yuan, Q.: Personalized ranking metric embedding for next new POI recommendation. In: IJCAI. pp. 2069–2075 (2015)
He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering. In: WWW, pp. 173–182 (2017)
Xiao, J., Ye, H., He, X., Zhang, H., Wu, F., Chua, T.-S.: Attentional factorization machines: learning the weight of feature interactions via attention networks. In: IJCAI, pp. 3119–3125 (2017)
Kabbur, S., Ning, X., Karypis, G.: FISM: factored item similarity models for top-N recommender systems. In: SIGKDD, pp. 659–667 (2013)
Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: SIGKDD, pp. 426–434 (2008)
Li, H., Ge, Y., Hong, R., Zhu, H.: Point-of-interest recommendations: learning potential check-ins from friends. In: SIGKDD, pp. 975–984 (2016)
Li, X., Cong, G., Li, X.L., Pham, T.A.N., Krishnaswamy, S.: Rank-geoFM: a ranking based geographical factorization method for point of interest recommendation. In: SIGIR, pp. 433–442 (2015)
Lian, D., Zhao, C., Xie, X., Sun, G., Chen, E., Rui, Y.: GeoMF: joint geographical modeling and matrix factorization for point-of-interest recommendation. In: SIGKDD, pp. 831–840 (2014)
Liu, X., Liu, Y., Li, X.: Exploring the context of locations for personalized location recommendations. In: IJCAI, pp. 1188–1194 (2016)
Liu, Y., Pham, T.A.N., Cong, G., Yuan, Q.: An experimental evaluation of point-of-interest recommendation in location-based social networks. VLDB 10(10), 1010–1021 (2017)
Liu, Y., Wei, W., Sun, A., Miao, C.: Exploiting geographical neighborhood characteristics for location recommendation. In: CIKM, pp. 739–748 (2014)
Zhang, Q., Wang, J., Huang, H., Huang, X., Gong, Y.: Hashtag recommendation for multimodal microblog using co-attention network. In: IJCAI, pp. 3420–3426 (2017)
Xie, M., Yin, H., Wang, H., Xu, F., Chen, W., Wang, S.: Learning graph-based POI embedding for location-based recommendation. In: CIKM, pp. 15–24 (2016)
Xiong, C., Callan, J., Liu, T.Y.: Word-entity duet representations for document ranking. In: SIGIR, pp. 763–772 (2017)
Yang, C., Bai, L., Zhang, C., Yuan, Q., Han, J.: Bridging collaborative filtering and semi-supervised learning: a neural approach for poi recommendation. In: SIGKDD, pp. 1245–1254 (2017)
Ye, M., Yin, P., Lee, W.C., Lee, D.L.: Exploiting geographical influence for collaborative point-of-interest recommendation. In: SIGIR, pp. 325–334 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Zhang, S., Cheng, H. (2018). Exploiting Context Graph Attention for POI Recommendation in Location-Based Social Networks. In: Pei, J., Manolopoulos, Y., Sadiq, S., Li, J. (eds) Database Systems for Advanced Applications. DASFAA 2018. Lecture Notes in Computer Science(), vol 10827. Springer, Cham. https://doi.org/10.1007/978-3-319-91452-7_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-91452-7_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-91451-0
Online ISBN: 978-3-319-91452-7
eBook Packages: Computer ScienceComputer Science (R0)