Skip to main content

Discrete Binary Hashing Towards Efficient Fashion Recommendation

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10827))

Included in the following conference series:

Abstract

How to match clothing well is always a troublesome problem in our daily life, especially when we are shopping online to select a pair of matched pieces of clothing from tens of thousands available selections. To help common customers overcome selection difficulties, recent studies in the recommender system area have started to infer the fashion matching results automatically. The conventional fashion recommendation is normally achieved by considering visual similarity of clothing items or/and item co-purchase history from existing shopping transactions. Due to the high complexity of visual features and the lack of historical item purchase records, most of the existing work is unlikely to make an efficient and accurate recommendation. To address the problem, in this paper we propose a new model called Discrete Supervised Fashion Coordinates Hashing (DSFCH). Its main objective is to learn meaningful yet compact high level features of clothing items, which are represented as binary hash codes. In detail, this learning process is supervised by a clothing matching matrix, which is initially constructed based on limited known matching pairs and subsequently on the self-augmented ones. The proposed model jointly learns the intrinsic matching patterns from the matching matrix and the binary representations from the clothing items’ images, where the visual feature of each clothing item is discretized into a fixed-length binary vector. The binary representation learning significantly reduces the memory cost and accelerates the recommendation speed. The experiments compared with several state-of-the-art approaches have evidenced the superior performance of the proposed approach on efficient fashion recommendation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    www.net-a-porter.com/au/.

  2. 2.

    www.farfetch.com/au/.

References

  1. Al-Halah, Z., Stiefelhagen, R., Grauman, K.: Fashion forward: forecasting visual style in fashion. In: ICCV, October 2017

    Google Scholar 

  2. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. Commun. ACM 51(1), 117–122 (2008)

    Article  Google Scholar 

  3. Andoni, A., Razenshteyn, I.: Optimal data-dependent hashing for approximate near neighbors. In: STOC, STOC 2015, pp. 793–801. ACM (2015)

    Google Scholar 

  4. Bracher, C., Heinz, S., Vollgraf, R.: Fashion DNA: merging content and sales data for recommendation and article mapping. CoRR abs/1609.02489 (2016)

    Google Scholar 

  5. Chen, K., Chen, K., Cong, P., Hsu, W.H., Luo, J.: Who are the devils wearing Prada in New York city? In: Proceedings of the 23rd ACM international conference on Multimedia, pp. 177–180. ACM (2015)

    Google Scholar 

  6. Gong, Y., Lazebnik, S., Gordo, A., Perronnin, F.: Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval. TPAMI 35(12), 2916–2929 (2013)

    Article  Google Scholar 

  7. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. CVPR 2, 1735–1742 (2006)

    Google Scholar 

  8. He, R., Packer, C., McAuley, J.: Learning compatibility across categories for heterogeneous item recommendation. In: ICDM, pp. 937–942. IEEE (2016)

    Google Scholar 

  9. Iwata, T., Wanatabe, S., Sawada, H.: Fashion coordinates recommender system using photographs from fashion magazines. In: IJCAI, vol. 22, p. 2262 (2011)

    Google Scholar 

  10. Jagadeesh, V., Piramuthu, R., Bhardwaj, A., Di, W., Sundaresan, N.: Large scale visual recommendations from street fashion images. In: SIGKDD, KDD 2014, pp. 1925–1934. ACM (2014)

    Google Scholar 

  11. Jiang, Q.Y., Li, W.J.: Scalable graph hashing with feature transformation. In: IJCAI, IJCAI 2015, pp. 2248–2254. AAAI Press (2015)

    Google Scholar 

  12. Kang, W.C., Fang, C., Wang, Z., McAuley, J.: Visually-aware fashion recommendation and design with generative image models. arXiv preprint arXiv:1711.02231 (2017)

  13. Kiapour, M.H., Han, X., Lazebnik, S., Berg, A.C., Berg, T.L.: Where to buy it: matching street clothing photos in online shops. In: ICCV, pp. 3343–3351 (2015)

    Google Scholar 

  14. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  15. Lew, M.S., Sebe, N., Djeraba, C., Jain, R.: Content-based multimedia information retrieval: state of the art and challenges. TOMM 2(1), 1–19 (2006)

    Article  Google Scholar 

  16. Liong, V.E., Lu, J., Wang, G., Moulin, P., Zhou, J.: Deep hashing for compact binary codes learning. In: CVPR, pp. 2475–2483 (2015)

    Google Scholar 

  17. Liu, L., Lin, Z., Shao, L., Shen, F., Ding, G., Han, J.: Sequential discrete hashing for scalable cross-modality similarity retrieval. TIP 26(1), 107–118 (2017)

    MathSciNet  MATH  Google Scholar 

  18. Liu, L., Zhu, L., Li, Z.: Learning robust graph hashing for efficient similarity search. In: Huang, Z., Xiao, X., Cao, X. (eds.) ADC 2017. LNCS, vol. 10538, pp. 110–122. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68155-9_9

    Chapter  Google Scholar 

  19. Liu, W., Wang, J., Ji, R., Jiang, Y.G., Chang, S.F.: Supervised hashing with kernels. In: CVPR, pp. 2074–2081 (2012)

    Google Scholar 

  20. Liu, W., Mu, C., Kumar, S., Chang, S.F.: Discrete graph hashing. In: NIPS, NIPS 2014, pp. 3419–3427. MIT Press (2014)

    Google Scholar 

  21. Liu, W., Wang, J., Ji, R., Jiang, Y.G., Chang, S.F.: Supervised hashing with kernels. In: CVPR, pp. 2074–2081. IEEE (2012)

    Google Scholar 

  22. Liu, Z., Luo, P., Qiu, S., Wang, X., Tang, X.: DeepFashion: powering robust clothes recognition and retrieval with rich annotations. In: CVPR (2016)

    Google Scholar 

  23. Liu, Z., Yan, S., Luo, P., Wang, X., Tang, X.: Fashion landmark detection in the wild. In: ECCV (2016)

    Google Scholar 

  24. McAuley, J., Pandey, R., Leskovec, J.: Inferring networks of substitutable and complementary products. In: SIGKDD, pp. 785–794. ACM (2015)

    Google Scholar 

  25. McAuley, J., Targett, C., Shi, Q., van den Hengel, A.: Image-based recommendations on styles and substitutes. In: SIGIR, SIGIR 2015, pp. 43–52. ACM (2015)

    Google Scholar 

  26. McAuley, J., Yang, A.: Addressing complex and subjective product-related queries with customer reviews. In: Proceedings of the 25th International Conference on World Wide Web, pp. 625–635. International World Wide Web Conferences Steering Committee (2016)

    Google Scholar 

  27. Shen, F., Shen, C., Liu, W., Shen, H.T.: Supervised discrete hashing. In: CVPR, pp. 37–45 (2015)

    Google Scholar 

  28. Shen, F., Liu, W., Zhang, S., Yang, Y., Tao Shen, H.: Learning binary codes for maximum inner product search. In: ICCV, pp. 4148–4156 (2015)

    Google Scholar 

  29. Shrivastava, A., Li, P.: Asymmetric LSH (ALSH) for sublinear time maximum inner product search (mips). In: NIPS, pp. 2321–2329 (2014)

    Google Scholar 

  30. Simo-Serra, E., Fidler, S., Moreno-Noguer, F., Urtasun, R.: Neuroaesthetics in fashion: modeling the perception of fashionability. In: CVPR, pp. 869–877 (2015)

    Google Scholar 

  31. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  32. Song, J., Yang, Y., Yang, Y., Huang, Z., Shen, H.T.: Inter-media hashing for large-scale retrieval from heterogeneous data sources. In: SIGMOD, SIGMOD 2013, pp. 785–796. ACM (2013)

    Google Scholar 

  33. Veit, A., Kovacs, B., Bell, S., McAuley, J., Bala, K., Belongie, S.: Learning visual clothing style with heterogeneous dyadic co-occurrences. In: ICCV, pp. 4642–4650 (2015)

    Google Scholar 

  34. Wan, M., McAuley, J.: Modeling ambiguity, subjectivity, and diverging viewpoints in opinion question answering systems. In: ICDM, pp. 489–498. IEEE (2016)

    Google Scholar 

  35. Wang, C., Blei, D.M.: Collaborative topic modeling for recommending scientific articles. In: SIGKDD, pp. 448–456. ACM (2011)

    Google Scholar 

  36. Wang, H., Wang, N., Yeung, D.Y.: Collaborative deep learning for recommender systems. In: SIGKDD, pp. 1235–1244. ACM (2015)

    Google Scholar 

  37. Wang, J., Kumar, S., Chang, S.F.: Semi-supervised hashing for scalable image retrieval. In: CVPR, pp. 3424–3431 (2010)

    Google Scholar 

  38. Wang, J., Kumar, S., Chang, S.F.: Semi-supervised hashing for large-scale search. TPAMI 34(12), 2393–2406 (2012)

    Article  Google Scholar 

  39. Wang, J., Xu, X.S., Guo, S., Cui, L., Wang, X.L.: Linear unsupervised hashing for ANN search in Euclidean space. Neurocomputing 171, 283–292 (2016)

    Article  Google Scholar 

  40. Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) NIPS, pp. 1753–1760. Curran Associates, Inc. (2009)

    Google Scholar 

  41. Xia, R., Pan, Y., Lai, H., Liu, C., Yan, S.: Supervised hashing for image retrieval via image representation learning. AAAI 1, 2156–2162 (2014)

    Google Scholar 

  42. Xu, H., Wang, J., Li, Z., Zeng, G., Li, S., Yu, N.: Complementary hashing for approximate nearest neighbor search. In: ICCV, pp. 1631–1638 (2011)

    Google Scholar 

  43. Zhang, P., Zhang, W., Li, W.J., Guo, M.: Supervised hashing with latent factor models. In: SIGIR, SIGIR 2014, pp. 173–182. ACM (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luyao Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, L., Du, X., Zhu, L., Shen, F., Huang, Z. (2018). Discrete Binary Hashing Towards Efficient Fashion Recommendation. In: Pei, J., Manolopoulos, Y., Sadiq, S., Li, J. (eds) Database Systems for Advanced Applications. DASFAA 2018. Lecture Notes in Computer Science(), vol 10827. Springer, Cham. https://doi.org/10.1007/978-3-319-91452-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91452-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91451-0

  • Online ISBN: 978-3-319-91452-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics