Abstract
We developed a system for programming practice that provides adaptive feedback based on the presence of confusion on the student. The system provides two types of adaptive feedback. First, it can control the complexity of the exercises presented to the student. Second, it can offer guides for the exercises when needed. These feedback are based on the presence of confusion, which is detected based on the student’s compilations, typing activity, and facial expressions using a hidden Markov model trained on data collected from introductory programming course students. In this paper we discuss the system, the approach for detecting confusion, and the types of adaptive feedback displayed. We tested our system on Japanese university students and discuss the results and their feedback. This study can lay the foundation for the development of intelligent programming tutors that can generate personalized learning content based on the state of the individual learner.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Affectiva developer portal. https://developer.affectiva.com/. Accessed 04 Jan 2018
Codecademy. https://www.codecademy.com. Accessed 04 Jan 2018
Code.org. https://code.org. Accessed 04 Jan 2018
Programming education at elementary school level - ministry of education, culture, sports, science and technology Japan. http://www.mext.go.jp/b_menu/shingi/chousa/shotou/122/attach/1372525.htm. Accessed 04 Jan 2018
Ade-Ibijola, Abejide, Ewert, Sigrid, Sanders, Ian: Introducing Code Adviser: A DFA-driven Electronic Programming Tutor. In: Drewes, Frank (ed.) CIAA 2015. LNCS, vol. 9223, pp. 307–312. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22360-5_25
Arawjo, I., Wang, C.Y., Myers, A.C., Andersen, E., Guimbretière, F.: Teaching programming with gamified semantics. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pp. 4911–4923. ACM (2017)
Balanskat, A., Engelhardt, K.: Computer programming and coding: priorities, school curricula and initiatives across Europe, European schoolnet (2015)
Barros, J.P., Estevens, L., Dias, R., Pais, R., Soeiro, E.: Using lab exams to ensure programming practice in an introductory programming course. ACM SIGCSE Bull. 35(3), 16–20 (2003)
Ben-Ari, M.: Visualization of programming. Improv. Comput. Sci. Educ. 52 (2013)
Bosch, Nigel, D’Mello, Sidney, Mills, Caitlin: What Emotions Do Novices Experience during Their First Computer Programming Learning Session? In: Lane, H.Chad, Yacef, Kalina, Mostow, Jack, Pavlik, Philip (eds.) AIED 2013. LNCS (LNAI), vol. 7926, pp. 11–20. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39112-5_2
Cabada, R.Z., Estrada, M.L.B., Hernández, F.G., Bustillos, R.O.: An affective learning environment for Java. In: 2015 IEEE 15th International Conference on Advanced Learning Technologies (ICALT), pp. 350–354. IEEE (2015)
Cooper, S., Dann, W., Pausch, R.: Alice: a 3-D tool for introductory programming concepts. J. Comput. Sci. Coll. 15, 107–116 (2000). Consortium for Computing Sciences in Colleges
Digital Promise: Computational thinking for a computational world (2017)
DMello, S., Jackson, T., Craig, S., Morgan, B., Chipman, P., White, H., Person, N., Kort, B., el Kaliouby, R., Picard, R., et al.: Autotutor detects and responds to learners affective and cognitive states. In: Workshop on Emotional and Cognitive Issues at the International Conference on Intelligent Tutoring Systems, pp. 306–308 (2008)
DMello, S.K., Lehman, B., Graesser, A.: A motivationally supportive affect-sensitive autotutor. In: Calvo, R., D’Mello, S. (eds.) New Perspectives on Affect and Learning Technologies, vol. 3, pp. 113–126. Springer, Heidelberg (2011). https://doi.org/10.1007/978-1-4419-9625-1_9
Ekman, P., Friesen, W.V.: Unmasking the face: a guide to recognizing emotions from facial cues (1975)
Frasson, C., Chalfoun, P.: Managing learners affective states in intelligent tutoring systems. In: Nkambou, R., Bourdeau, J., Mizoguchi, R. (eds.) Advances in Intelligent Tutoring Systems. SCI, vol. 308, pp. 339–358. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14363-2_17
Fulton, K.: Upside down and inside out: flip your classroom to improve student learning. Learn. Leading Technol. 39(8), 12–17 (2012)
Gerdes, A., Heeren, B., Jeuring, J., van Binsbergen, L.T.: Ask-elle: an adaptable programming tutor for haskell giving automated feedback. Int. J. Artif. Intell. Educ. 27(1), 65–100 (2017)
Grafsgaard, Joseph F., Boyer, Kristy Elizabeth, Lester, James C.: Predicting Facial Indicators of Confusion with Hidden Markov Models. In: D’Mello, Sidney, Graesser, Arthur, Schuller, Björn, Martin, Jean-Claude (eds.) ACII 2011. LNCS, vol. 6974, pp. 97–106. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24600-5_13
Grafsgaard, J.F., Wiggins, J.B., Boyer, K.E., Wiebe, E.N., Lester, J.C.: Automatically recognizing facial indicators of frustration: a learning-centric analysis. In: 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction (ACII), pp. 159–165. IEEE (2013)
Grafsgaard, Joseph F., Wiggins, Joseph B., Boyer, Kristy Elizabeth, Wiebe, Eric N., Lester, James C.: Embodied Affect in Tutorial Dialogue: Student Gesture and Posture. In: Lane, H.Chad, Yacef, Kalina, Mostow, Jack, Pavlik, Philip (eds.) AIED 2013. LNCS (LNAI), vol. 7926, pp. 1–10. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39112-5_1
Keuning, H., Heeren, B., Jeuring, J.: Strategy-based feedback in a programming tutor. In: Proceedings of the Computer Science Education Research Conference, pp. 43–54. ACM (2014)
Lahtinen, E., Ala-Mutka, K., Järvinen, H.M.: A study of the difficulties of novice programmers. In: ACM Sigcse Bulletin, vol. 37, pp. 14–18. ACM (2005)
Le, N.T.: A classification of adaptive feedback in educational systems for programming. Systems 4(2), 22 (2016)
Lee, Diane Marie C., Rodrigo, Ma Mercedes T., Baker, Ryan S.J.d, Sugay, Jessica O., Coronel, Andrei: Exploring the Relationship between Novice Programmer Confusion and Achievement. In: D’Mello, Sidney, Graesser, Arthur, Schuller, Björn, Martin, Jean-Claude (eds.) ACII 2011. LNCS, vol. 6974, pp. 175–184. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24600-5_21
Melis, E., Andres, E.: Global feedback in activemath. J. Comput. Math. Sci. Teach. 24(2), 197 (2005)
Myers, B.A.: Taxonomies of visual programming and program visualization. J. Vis. Lang. Comput. 1(1), 97–123 (1990)
Okpo, J., Masthoff, J., Dennis, M., Beacham, N.: Conceptualizing a framework for adaptive exercise selection with personality as a major learner characteristic. In: Adjunct Publication of the 25th Conference on User Modeling, Adaptation and Personalization, pp. 293–298. ACM (2017)
Piaget, J., Cook, M.: The Origins of Intelligence in Children, vol. 8. International Universities Press, New York (1952)
Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B., et al.: Scratch: programming for all. Commun. ACM 52(11), 60–67 (2009)
Rivers, K., Koedinger, K.R.: Data-driven hint generation in vast solution spaces: a self-improving python programming tutor. Int. J. Artif. Intell. Educ. 27(1), 37–64 (2017)
Rodrigo, M.M.T., Baker, R.S., Jadud, M.C., Amarra, A.C.M., Dy, T., Espejo-Lahoz, M.B.V., Lim, S.A.L., Pascua, S.A., Sugay, J.O., Tabanao, E.S.: Affective and behavioral predictors of novice programmer achievement. In: ACM SIGCSE Bulletin, vol. 41, pp. 156–160. ACM (2009)
Salden, R.J., Paas, F., Van Merriënboer, J.J.: Personalised adaptive task selection in air traffic control: effects on training efficiency and transfer. Learn. Instr. 16(4), 350–362 (2006)
Thompson, N., McGill, T.J.: Genetics with jean: the design, development and evaluation of an affective tutoring system. Educ. Technol. Res. Dev. 65(2), 279–299 (2017)
Tiam-Lee, T.J., Sumi, K.: Analyzing facial expressions and hand gestures in filipino students’ programming sessions. In: 2017 International Conference on Culture and Computing (Culture and Computing), pp. 75–81. IEEE (2017)
Tiam-Lee, T.J., Sumi, K.: A comparison of Filipino and Japanese facial expressions and hand gestures in relation to affective states in programming sessions. In: Workshop on Computation: Theory and Practice 2017 (2017)
Woolf, B., Burleson, W., Arroyo, I., Dragon, T., Cooper, D., Picard, R.: Affect-aware tutors: recognising and responding to student affect. Int. J. Learn. Technol. 4(3–4), 129–164 (2009)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Tiam-Lee, T.J., Sumi, K. (2018). Adaptive Feedback Based on Student Emotion in a System for Programming Practice. In: Nkambou, R., Azevedo, R., Vassileva, J. (eds) Intelligent Tutoring Systems. ITS 2018. Lecture Notes in Computer Science(), vol 10858. Springer, Cham. https://doi.org/10.1007/978-3-319-91464-0_24
Download citation
DOI: https://doi.org/10.1007/978-3-319-91464-0_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-91463-3
Online ISBN: 978-3-319-91464-0
eBook Packages: Computer ScienceComputer Science (R0)