Abstract
E-learning systems based on a conversational agent (CA) provide the basis of an intuitive and engaging interface for the student. The goal of this paper is to propose a method for detecting conversational interaction behaviors of learners and CAs, using an agent-based framework, for the purpose of improving the communication between students and CA-based intelligent tutoring systems. Our framework models both the student and the CA and uses agents to represent data sources for each. We show how the framework uses the detection of conversational behaviors to initiate interventions to improve student conversational engagement. The results of initial user testing are reported.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kerry, A., Ellis, R., Bull, S.: Conversational agents in E-Learning. In: Allen, T., Ellis, R., Petridis, M. (eds.) Applications and Innovations in Intelligent Systems, vol. XVI, pp. 169–182. Springer London (2009). https://doi.org/10.1007/978-1-84882-215-3_13
Szafir, D., Mutlu, B.: Pay attention!: designing adaptive agents that monitor and improve user engagement. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 11–20. ACM, New York (2012)
Nakano, Y.I., Ishii, R.: Estimating user’s engagement from eye-gaze behaviors in human-agent conversations. In: Proceedings of the 15th International Conference on Intelligent User Interfaces, pp. 139–148. ACM, New York (2010)
Xu, Q., Li, L., Wang, G.: Designing engagement-aware agents for multiparty conversations. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2233–2242. ACM, New York (2013)
Asteriadis, S., Karpouzis, K., Kollias, S.: Feature extraction and selection for inferring user engagement in an HCI environment. In: Jacko, J.A. (ed.) HCI 2009. LNCS, vol. 5610, pp. 22–29. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02574-7_3
Paquette, L., Baker, R.S.J.D., Sao Pedro, M.A., Gobert, J.D., Rossi, L., Nakama, A., Kauffman-Rogoff, Z.: Sensor-free affect detection for a simulation-based science inquiry learning environment. In: Trausan-Matu, S., Boyer, K.E., Crosby, M., Panourgia, K. (eds.) ITS 2014. LNCS, vol. 8474, pp. 1–10. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07221-0_1
Wen, M., Yang, D., Rose, C.P.: Linguistic reflections of student engagement in massive open online courses. In: Eighth International AAAI Conference on Weblogs and Social Media (2014)
Turney, P.D., Neuman, Y., Assaf, D., Cohen, Y.: Literal and metaphorical sense identification through concrete and abstract context. In: Proceedings of the 2011 Conference on the Empirical Methods in Natural Language Processing, pp. 680–690 (2011)
Heller, R., Procter, M.: Animated pedagogical agents: the effect of visual information on a historical figure application. Int. J. Web-Based Learn. Teach. Technol. 4, 54–65 (2009)
Procter, M., Lin, F., Heller, R.: Improving conversation engagement through data-driven agent behavior modification. In: Khoury, R., Drummond, C. (eds.) AI 2016. LNCS (LNAI), vol. 9673, pp. 270–275. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34111-8_33
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Procter, M., Heller, R., Lin, F. (2018). Classifying Interaction Behaviors of Students and Conversational Agents Through Dialog Analysis. In: Nkambou, R., Azevedo, R., Vassileva, J. (eds) Intelligent Tutoring Systems. ITS 2018. Lecture Notes in Computer Science(), vol 10858. Springer, Cham. https://doi.org/10.1007/978-3-319-91464-0_42
Download citation
DOI: https://doi.org/10.1007/978-3-319-91464-0_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-91463-3
Online ISBN: 978-3-319-91464-0
eBook Packages: Computer ScienceComputer Science (R0)