Abstract
Edge detection is a basic technique used as a preliminary step for, e.g., object extraction and recognition in image processing. Many of the methods for edge detection can be fit in the breakdown structure by Bezdek, in which one of the key parts is feature extraction. This work presents a method to extract edge features from a grayscale image using the so-called ordered directionally monotone functions. For this purpose we introduce some concepts about directional monotonicity and present two construction methods for feature extraction operators. The proposed technique is competitive with the existing methods in the literature. Furthermore, if we combine the features obtained by different methods using penalty functions, the results are equal or better results than state-of-the-art methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)
Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners, vol. 18. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73721-6
Beliakov, G., Sola, H.B., Sánchez, T.C.: A practical guide to averaging functions, vol. 329. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-24753-3
Bezdek, J., Chandrasekhar, R., Attikouzel, Y.: A geometric approach to edge detection. IEEE Trans. Fuzzy Syst. 6(1), 52–75 (1998)
Bustince, H., Barrenechea, E., Sesma-Sara, M., Lafuente, J., Dimuro, G.P., Mesiar, R., Kolesarova, A.: Ordered directionally monotone functions. Justification and application. IEEE Trans. Fuzzy Syst. PP(99), 1 (2017)
Bustince, H., Fernandez, J., Kolesárová, A., Mesiar, R.: Directional monotonicity of fusion functions. Eur. J. Oper. Res. 244, 300–308 (2015)
Bustince, H., Beliakov, G., Pereira Dimuro, G., Bedregal, B., Mesiar, R.: On the definition of penalty functions in data aggregation. Fuzzy Sets Syst. 323, 1–18 (2017)
Calvo, T., Kolesárová, A., Komorníková, M., Mesiar, R.: Aggregation Operators: Properties, Classes and Construction Methods. Aggreg. Oper. New Trends Appl. 97(1), 3–104 (2002)
Canny, J.F.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)
Estrada, F.J., Jepson, A.D.: Benchmarking image segmentation algorithms. Int. J. Comput. Vis. 85(2), 167–181 (2009)
Forero-Vargas, M.G.: Fuzzy thresholding and histogram analysis. In: Nachtegael, M., Van der Weken, D., Kerre, E.E., Van De Ville, D. (eds.) Fuzzy Filters for Image Processing, pp. 129–152. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-36420-7_6
Gonzalez-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D.: On the choice of the pair conjunction-implication into the fuzzy morphological edge detector. IEEE Trans. Fuzzy Syst. 23(4), 872–884 (2015)
Grabisch, M., Marichal, J.L., Mesiar, R., Pap, E.: Aggregation Functions (Encyclopedia of Mathematics and Its Applications), 1st edn. Cambridge University Press, New York (2009)
Kermit Research Unit (Ghent University): The kermit image toolkit (kitt). www.kermitimagetoolkit.com
Law, T., Itoh, H., Seki, H.: Image filtering, edge detection, and edge tracing using fuzzy reasoning. IEEE Trans. Pattern Anal. Mach. Intell. 18(5), 481–491 (1996)
Lopez-Molina, C.: The breakdown structure of edge detection - analysis of individual components and revisit of the overall structure. Ph.D. thesis, Universidad Publica de Navarra (2012)
Lopez-Molina, C., Bustince, H., Fernandez, J., Couto, P., De Baets, B.: A gravitational approach to edge detection based on triangular norms. Pattern Recogn. 43(11), 3730–3741 (2010)
Lopez-Molina, C., De Baets, B., Bustince, H.: Quantitative error measures for edge detection. Pattern Recogn. 46(4), 1125–1139 (2013)
Lopez-Molina, C., De Baets, B., Bustince, H.: A framework for edge detection based on relief functions. Inf. Sci. (Ny) 278, 127–140 (2014)
Martin, D.R., Fowlkes, C.C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 530–549 (2004)
Martin, D.R.: An empirical approach to grouping and segmentation. EECS Department, University of California, Berkeley, August 2003. UCB/CSD-03-1268. http://www2.eecs.berkeley.edu/Pubs/TechRpts/2003/5252.html
Medina-Carnicer, R., Muñoz-Salinas, R., Yeguas-Bolivar, E., Diaz-Mas, L.: A novel method to look for the hysteresis thresholds for the Canny edge detector. Pattern Recogn. 44(6), 1201–1211 (2011)
Prewitt, J.M.S.: Object enhancement and extraction. Pict. Process. Psychopictorics 10(1), 75–149 (1970)
Schweiser, B., Sklar, A.: Associative functions and statistical triangle inequalities. Publ. Math. Debr. 8, 169–186 (1961)
Sobel, I., Feldman, G.: A 3x3 isotropic gradient operator for image processing. In: Hart, P.E., Duda, R.O. (eds.) Pattern Classification Scene Analysis, pp. 271–272 (1973)
Torre, V., Poggio, T.: On edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(2), 147–163 (1986)
van de Weijer, J., van den Boomgaard, R.: Local mode filtering. In: 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001), Kauai, HI, USA, 8–14 December 2001, pp. 428–433. IEEE Computer Society (2001)
Wilkin, T., Beliakov, G.: Weakly monotonic averaging functions. Int. J. Intell. Syst. 30(2), 144–169 (2015)
Yager, R.R.: On Ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Trans. Syst. Man Cybern. 18(1), 183–190 (1988)
Acknowledgments
This work is supported by the Spanish Ministry of Science (Project TIN2016-77356-P) and the Research Services of Universidad Publica de Navarra.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Marco-Detchart, C., Lopez-Molina, C., Fernández, J., Pagola, M., Bustince, H. (2018). Image Feature Extraction Using OD-Monotone Functions. In: Medina, J., et al. Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations. IPMU 2018. Communications in Computer and Information Science, vol 853. Springer, Cham. https://doi.org/10.1007/978-3-319-91473-2_23
Download citation
DOI: https://doi.org/10.1007/978-3-319-91473-2_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-91472-5
Online ISBN: 978-3-319-91473-2
eBook Packages: Computer ScienceComputer Science (R0)