Abstract
A family of conditional risk measures is introduced by considering a single period financial market, relying on a notion of conditioning for submodular capacities, which generalizes that introduced by Dempster. The resulting measures are expressed as discounted conditional Choquet expected values, take into account ambiguity towards uncertainty and allow for conditioning to “null” events. We also provide a characterisation of consistence of a partial assessment with a conditional submodular coherent risk measure. The latter amounts to test the solvability of a suitable sequence of linear systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Artzner, P., Delbaen, F., Eber, J.-M., Heath, D., Ku, H.: Coherent multiperiod risk adjusted values and Bellman’s principle. Ann. Oper. Res. 152, 5–22 (2007). https://doi.org/10.1007/s10479-006-0132-6
Artzner, P., Delbaen, P., Eber, J.-M., Heath, D.: Coherent measures of risk. Math. Finan. 9(3), 203–228 (1999). https://doi.org/10.1111/1467-9965.00068
Baroni, P., Pelessoni, R., Vicig, P.: Generalizing Dutch risk measures through imprecise previsions. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 17(2), 153–177 (2009). https://doi.org/10.1142/S0218488509005796
Bion-Nadal, J.: Dynamic risk measures: time consistency and risk measures from BMO martingales. Finan. Stochast. 12, 219–244 (2008). https://doi.org/10.1007/s00780-007-0057-1
Capotorti, A., Coletti, G., Vantaggi, B.: Standard and nonstandard representability of positive uncertainty orderings. Kybernetika 50(2), 189–215 (2014). https://doi.org/10.14736/kyb-2014-2-0189
Chateauneuf, A., Kast, R., Lapied, A.: Conditioning capacities and Choquet integrals: the role of comonotony. Theor. Dec. 51, 367–386 (2001). https://doi.org/10.1023/A:1015567329595
Chateauneuf, A., Jaffray, J.-Y.: Some characterizations of lower probabilities and other monotone capacities through the use of Möbous inversion. Math. Soc. Sci. 17, 263–283 (1989). https://doi.org/10.1016/0165-4896(89)90056-5
Cheridito, P., Delbaen, F., Kupper, M.: Dynamic monetary risk measures for bounded discrete-time processes. Electron. J. Probab. 11, 57–106 (2006). https://doi.org/10.1214/EJP.v11-302
Coletti, G., Petturiti, D., Vantaggi, B.: Conditional belief functions as lower envelopes of conditional probabilities in a finite setting. Inf. Sci. 339, 64–84 (2016). https://doi.org/10.1016/j.ins.2015.12.020
Coletti, G., Vantaggi, B.: A view on conditional measures through local representability of binary relations. Int. J. Approx. Reason. 47, 268–283 (2008). https://doi.org/10.1016/j.ijar.2007.05.007
Delbaen, F.: Coherent risk measures on general probability spaces. In: Sandman, K., Schönbucher, P.J. (eds.) Advances in Finance Stochastics, pp. 1–37. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-662-04790-3_1
Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 2, 325–339 (1967). https://doi.org/10.1214/aoms/1177698950
Denneberg, D.: Conditioning (updating) non-additive measures. Ann. Oper. Res. 52(1), 21–42 (1994). https://doi.org/10.1007/BF02032159
Denneberg, D.: Non-additive Measure and Integral. Kluwer Academic Publishers, Dordrecht (1994). https://doi.org/10.1007/978-94-017-2434-0
Dubins, L.E.: Finitely additive conditional probabilities, conglomerability and disintegrations. Ann. Probab. 3, 89–99 (1975). https://doi.org/10.1214/aop/1176996451
Föllmer, H., Penner, I.: Convex risk measures and the dynamics of their penalty functions. Stat. Dec. 24, 61–96 (2006). https://doi.org/10.1524/stnd.2006.24.1.61
Grabisch, M.: Set Functions, Games and Capacities in Decision Making. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30690-2
Halpern, J.H.: Reasoning About Uncertainty. The MIT Press, Cambrige (2005)
Jaffray, J.Y.: Bayesian updating and belief functions. IEEE Trans. Man Cybern. 22, 1144–1152 (1992). https://doi.org/10.1109/21.179852
Pelessoni, R., Vicig, P.: Imprecise previsions for risk measurement. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 11(4), 393–412 (2003). https://doi.org/10.1142/S0218488503002156
Pelessoni, R., Vicig, P.: Uncertainty modelling and conditioning with convex imprecise previsions. Int. J. Approx. Reason. 39, 297–319 (2005). https://doi.org/10.1016/j.ijar.2004.10.007
Pelessoni, R., Vicig, P.: 2-coherent and 2-convex conditional lower previsions. Int. J. Approx. Reason. 77, 66–86 (2016). https://doi.org/10.1016/j.ijar.2016.06.003
Pelessoni, R., Vicig, P., Zaffalon, M.: Inference and risk measurement with the pari-mutuel model. Int. J. Approx. Reason. 51, 1145–1158 (2010). https://doi.org/10.1016/j.ijar.2010.08.005
Riedel, F.: Dynamic coherent risk measures. Stochast. Process. Appl. 112(2), 185–200 (2004). https://doi.org/10.1016/j.spa.2004.03.004
Roorda, B., Schumacher, J.M., Engwerda, J.: Coherent acceptability measures in multiperiod models. Math. Finan. 15(4), 589–612 (2005). https://doi.org/10.1111/j.1467-9965.2005.00252.x
Schmeidler, D.: Integral representation without additivity. Proc. Am. Math. Soc. 97(2), 255–261 (1986). https://doi.org/10.1090/S0002-9939-1986-0835875-8
Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)
Troffaes, M.C.M., de Cooman, G.: Lower Previsions. Wiley, Hoboken (2014). https://doi.org/10.1002/9781118762622
Vicig, P.: Financial risk measurement with imprecise probabilities. Int. J. Approx. Reason. 49, 159–174 (2008). https://doi.org/10.1016/j.ijar.2007.06.009
Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, New York (1991)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Coletti, G., Petturiti, D., Vantaggi, B. (2018). Conditional Submodular Coherent Risk Measures. In: Medina, J., et al. Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations. IPMU 2018. Communications in Computer and Information Science, vol 854. Springer, Cham. https://doi.org/10.1007/978-3-319-91476-3_20
Download citation
DOI: https://doi.org/10.1007/978-3-319-91476-3_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-91475-6
Online ISBN: 978-3-319-91476-3
eBook Packages: Computer ScienceComputer Science (R0)