Skip to main content

Abstract

A family of conditional risk measures is introduced by considering a single period financial market, relying on a notion of conditioning for submodular capacities, which generalizes that introduced by Dempster. The resulting measures are expressed as discounted conditional Choquet expected values, take into account ambiguity towards uncertainty and allow for conditioning to “null” events. We also provide a characterisation of consistence of a partial assessment with a conditional submodular coherent risk measure. The latter amounts to test the solvability of a suitable sequence of linear systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Artzner, P., Delbaen, F., Eber, J.-M., Heath, D., Ku, H.: Coherent multiperiod risk adjusted values and Bellman’s principle. Ann. Oper. Res. 152, 5–22 (2007). https://doi.org/10.1007/s10479-006-0132-6

    Article  MathSciNet  MATH  Google Scholar 

  2. Artzner, P., Delbaen, P., Eber, J.-M., Heath, D.: Coherent measures of risk. Math. Finan. 9(3), 203–228 (1999). https://doi.org/10.1111/1467-9965.00068

    Article  MathSciNet  MATH  Google Scholar 

  3. Baroni, P., Pelessoni, R., Vicig, P.: Generalizing Dutch risk measures through imprecise previsions. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 17(2), 153–177 (2009). https://doi.org/10.1142/S0218488509005796

    Article  MathSciNet  MATH  Google Scholar 

  4. Bion-Nadal, J.: Dynamic risk measures: time consistency and risk measures from BMO martingales. Finan. Stochast. 12, 219–244 (2008). https://doi.org/10.1007/s00780-007-0057-1

    Article  MathSciNet  MATH  Google Scholar 

  5. Capotorti, A., Coletti, G., Vantaggi, B.: Standard and nonstandard representability of positive uncertainty orderings. Kybernetika 50(2), 189–215 (2014). https://doi.org/10.14736/kyb-2014-2-0189

    Article  MathSciNet  MATH  Google Scholar 

  6. Chateauneuf, A., Kast, R., Lapied, A.: Conditioning capacities and Choquet integrals: the role of comonotony. Theor. Dec. 51, 367–386 (2001). https://doi.org/10.1023/A:1015567329595

    Article  MathSciNet  MATH  Google Scholar 

  7. Chateauneuf, A., Jaffray, J.-Y.: Some characterizations of lower probabilities and other monotone capacities through the use of Möbous inversion. Math. Soc. Sci. 17, 263–283 (1989). https://doi.org/10.1016/0165-4896(89)90056-5

    Article  MATH  Google Scholar 

  8. Cheridito, P., Delbaen, F., Kupper, M.: Dynamic monetary risk measures for bounded discrete-time processes. Electron. J. Probab. 11, 57–106 (2006). https://doi.org/10.1214/EJP.v11-302

    Article  MathSciNet  MATH  Google Scholar 

  9. Coletti, G., Petturiti, D., Vantaggi, B.: Conditional belief functions as lower envelopes of conditional probabilities in a finite setting. Inf. Sci. 339, 64–84 (2016). https://doi.org/10.1016/j.ins.2015.12.020

    Article  MathSciNet  MATH  Google Scholar 

  10. Coletti, G., Vantaggi, B.: A view on conditional measures through local representability of binary relations. Int. J. Approx. Reason. 47, 268–283 (2008). https://doi.org/10.1016/j.ijar.2007.05.007

    Article  MathSciNet  MATH  Google Scholar 

  11. Delbaen, F.: Coherent risk measures on general probability spaces. In: Sandman, K., Schönbucher, P.J. (eds.) Advances in Finance Stochastics, pp. 1–37. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-662-04790-3_1

    Chapter  Google Scholar 

  12. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 2, 325–339 (1967). https://doi.org/10.1214/aoms/1177698950

    Article  MathSciNet  MATH  Google Scholar 

  13. Denneberg, D.: Conditioning (updating) non-additive measures. Ann. Oper. Res. 52(1), 21–42 (1994). https://doi.org/10.1007/BF02032159

    Article  MathSciNet  MATH  Google Scholar 

  14. Denneberg, D.: Non-additive Measure and Integral. Kluwer Academic Publishers, Dordrecht (1994). https://doi.org/10.1007/978-94-017-2434-0

    Book  MATH  Google Scholar 

  15. Dubins, L.E.: Finitely additive conditional probabilities, conglomerability and disintegrations. Ann. Probab. 3, 89–99 (1975). https://doi.org/10.1214/aop/1176996451

    Article  MathSciNet  MATH  Google Scholar 

  16. Föllmer, H., Penner, I.: Convex risk measures and the dynamics of their penalty functions. Stat. Dec. 24, 61–96 (2006). https://doi.org/10.1524/stnd.2006.24.1.61

    Article  MathSciNet  MATH  Google Scholar 

  17. Grabisch, M.: Set Functions, Games and Capacities in Decision Making. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30690-2

    Book  MATH  Google Scholar 

  18. Halpern, J.H.: Reasoning About Uncertainty. The MIT Press, Cambrige (2005)

    MATH  Google Scholar 

  19. Jaffray, J.Y.: Bayesian updating and belief functions. IEEE Trans. Man Cybern. 22, 1144–1152 (1992). https://doi.org/10.1109/21.179852

    Article  MathSciNet  MATH  Google Scholar 

  20. Pelessoni, R., Vicig, P.: Imprecise previsions for risk measurement. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 11(4), 393–412 (2003). https://doi.org/10.1142/S0218488503002156

    Article  MathSciNet  MATH  Google Scholar 

  21. Pelessoni, R., Vicig, P.: Uncertainty modelling and conditioning with convex imprecise previsions. Int. J. Approx. Reason. 39, 297–319 (2005). https://doi.org/10.1016/j.ijar.2004.10.007

    Article  MathSciNet  MATH  Google Scholar 

  22. Pelessoni, R., Vicig, P.: 2-coherent and 2-convex conditional lower previsions. Int. J. Approx. Reason. 77, 66–86 (2016). https://doi.org/10.1016/j.ijar.2016.06.003

    Article  MathSciNet  MATH  Google Scholar 

  23. Pelessoni, R., Vicig, P., Zaffalon, M.: Inference and risk measurement with the pari-mutuel model. Int. J. Approx. Reason. 51, 1145–1158 (2010). https://doi.org/10.1016/j.ijar.2010.08.005

    Article  MathSciNet  MATH  Google Scholar 

  24. Riedel, F.: Dynamic coherent risk measures. Stochast. Process. Appl. 112(2), 185–200 (2004). https://doi.org/10.1016/j.spa.2004.03.004

    Article  MathSciNet  MATH  Google Scholar 

  25. Roorda, B., Schumacher, J.M., Engwerda, J.: Coherent acceptability measures in multiperiod models. Math. Finan. 15(4), 589–612 (2005). https://doi.org/10.1111/j.1467-9965.2005.00252.x

    Article  MathSciNet  MATH  Google Scholar 

  26. Schmeidler, D.: Integral representation without additivity. Proc. Am. Math. Soc. 97(2), 255–261 (1986). https://doi.org/10.1090/S0002-9939-1986-0835875-8

    Article  MathSciNet  MATH  Google Scholar 

  27. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  28. Troffaes, M.C.M., de Cooman, G.: Lower Previsions. Wiley, Hoboken (2014). https://doi.org/10.1002/9781118762622

    Book  MATH  Google Scholar 

  29. Vicig, P.: Financial risk measurement with imprecise probabilities. Int. J. Approx. Reason. 49, 159–174 (2008). https://doi.org/10.1016/j.ijar.2007.06.009

    Article  MathSciNet  MATH  Google Scholar 

  30. Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, New York (1991)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Petturiti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Coletti, G., Petturiti, D., Vantaggi, B. (2018). Conditional Submodular Coherent Risk Measures. In: Medina, J., et al. Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations. IPMU 2018. Communications in Computer and Information Science, vol 854. Springer, Cham. https://doi.org/10.1007/978-3-319-91476-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91476-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91475-6

  • Online ISBN: 978-3-319-91476-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics