Skip to main content

Abstract

Hahn’s celebrated embedding theorem asserts that linearly ordered Abelian groups embed in the lexicographic product of real groups [13]. In this paper the partial-lexicographic product construction is introduced, a class of residuated monoids, namely, group-like FL\(_e\)-chains which possess finitely many idempotents are embedded into finite partial-lexicographic products of linearly ordered Abelian groups, that is, Hahn’s theorem is extended to this residuated monoid class. As a side-result, the finite strong standard completeness of the logic \(\mathbf{IUL}^{fp}\) is announced.

S. Jenei—The present scientific contribution is dedicated to the \(650^{th}\) anniversary of the foundation of the University of Pécs, Hungary, and was supported by the GINOP 2.3.2-15-2016-00022 grant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Real groups are very specific in the class of residuated lattices.

  2. 2.

    In the more general modern terminology.

  3. 3.

    FL-algebras are also called pointed residuated lattices or pointed residuated lattice-ordered monoids.

  4. 4.

    Integrality means that the unit element of the multiplication is the greatest element of the underlying universe.

  5. 5.

    Also called FL\(_{ew}\)-algebras.

  6. 6.

    He called it reducible.

  7. 7.

    In the sense of Clifford.

  8. 8.

    Divisibility is the dual notion of being naturally ordered. For residuated integral monoids, divisibility is equivalent to the continuity of the semigroup operation in the order topology provided that the underlying chain is densely-ordered.

  9. 9.

    In the sense of Aglianò-Montagna.

  10. 10.

    A common generalization of ordinal sums and direct products.

  11. 11.

    It was proved for a wider class of algebras.

  12. 12.

    Absorbent continuity is a weakened version of the naturally ordered property.

  13. 13.

    Weakly real chains are densely-ordered chains with two additional properties.

  14. 14.

    A stronger statement was proved there for at most countable algebras. However, the part of the proof, which is about the densification step does not use this assumption.

  15. 15.

    Or its dual notion, divisibility.

  16. 16.

    That is, all elements are comparable with the unit element of the monoidal operation.

  17. 17.

    Sometimes the lattice operators are replaced by their induced ordering \(\le \) in the signature, in particular, if an FL\(_e\)-chain is considered, that is, if the ordering is linear.

  18. 18.

    That is, there exists a binary operation such that if and only if ; this equivalence is called residuation condition or adjointness condition, () is called an adjoint pair. Equivalently, for any xz, the set has its greatest element, and is defined as this element: .

  19. 19.

    We use the word monoid to mean semigroup with unit element.

  20. 20.

    Lattice-ordered Abelian groups equipped with and \(f:=t\) are group-like FL\(_e\)-algebras.

  21. 21.

    We set \(\max (\emptyset )=t\).

  22. 22.

    We mean that \((X\setminus X_1)*(X\setminus X_1)\subseteq X\setminus X_1\) holds.

  23. 23.

    We remark that the only choice for \(\mathbf X_1\) is \(\mathbf X_{\tau =t}\), see Definition 5.

  24. 24.

    We mean that for \(x\in X_1\), it holds true that \(x\notin \{ x_\uparrow ,x_\downarrow \}\subset X_1\) (\(\downarrow \) and \(\uparrow \) are computed in X).

  25. 25.

    Just like at item (0), the only choice for \(\mathbf X_1\) is \(\mathbf X_{\tau =t}\), provided that it is discrete, see Definition 5.

  26. 26.

    The rank of an involutive FL\(_e\)-algebra is positive if \(t>f\), negative if \(t<f\), and 0 if \(t=f\).

  27. 27.

    In the spirit of Theorem 1 we identify linearly ordered Abelian groups by cancellative, group-like FL\(_e\)-chains here.

  28. 28.

    \(\mathbf R\) extended by \(\top \) and \(\bot \), just like \(\mathbf Y\) in item (1) of Definition 4.

References

  1. Aczél, J.: Lectures on Functional Equations and Their Applications. Academic Press, New York/London (1966)

    MATH  Google Scholar 

  2. Aglianò, P., Montagna, F.: Varieties of BL-algebras I: general properties. J. Pure Appl. Algebra 181(2–3), 105–129 (2003)

    Article  MathSciNet  Google Scholar 

  3. Ánh, P.N., Márki, L., Vámos, P.: Divisibility theory in commutative rings: Bezout monoids. Trans. Am. Math. Soc. 364, 3967–3992 (2012)

    Article  MathSciNet  Google Scholar 

  4. Bosbach, B.: Concerning bricks. Acta Math. Acad. Sci. Hung. 38, 89–104 (1981)

    Article  MathSciNet  Google Scholar 

  5. Bosbach, B.: Concerning semiclans. Arch. Math. 37, 316–324 (1981)

    Article  MathSciNet  Google Scholar 

  6. Bosbach, B.: Komplementäre halbgruppen. axiomatik und arithmetik. Fund. Math. 64, 257–287 (1969)

    Article  MathSciNet  Google Scholar 

  7. Bosbach, B.: Residuation groupoids and lattices. Stud. Sci. Math. Hung. 13, 433–451 (1978)

    MathSciNet  MATH  Google Scholar 

  8. Cignoli, R., D’Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning. Kluwer, Dordrecht (2000)

    Book  Google Scholar 

  9. Clifford, A.H.: Naturally linearly ordered commutative semigroups. Am. J. Math. 76(3), 631–646 (1954)

    Article  Google Scholar 

  10. Conrad, P.F., Harvey, J., Holland, W.C.: The Hahn embedding theorem for lattice-ordered groups. Trans. Am. Math. Soc. 108, 143–169 (1963)

    Article  MathSciNet  Google Scholar 

  11. Fuchs, L.: Partially Ordered Algebraic Systems. Pergamon Press, Oxford/London/New York/Paris (1963)

    MATH  Google Scholar 

  12. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Studies in Logic and the Foundations of Mathematics, vol. 151. Elsevier, New York City (2007)

    MATH  Google Scholar 

  13. Hahn, H.: Über die nichtarchimedischen Grössensysteme. S.-B. Akad. Wiss. Wien. IIa 116, 601–655 (1907)

    MATH  Google Scholar 

  14. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht (1998)

    Book  Google Scholar 

  15. Horžík, R.: Algebraic semantics: semilinear FL-algebras. In: Cintula, P., Hájek, P., Noguera, C. (eds.) Handbook of Mathematical Fuzzy Logic, pp. 283–353. College Publications, London (2011)

    Google Scholar 

  16. Hölder, O.: Die Axiome der Quantität und die Lehre vom Mass. In: Berichte über die Verhandlungen der Königlich Sachsischen Gesellschaft der Wissenschaften zu Leipzig, Mathematisch-Physische Classe, vol. 53, pp. 1–64 (1901)

    Google Scholar 

  17. Jenei, S.: On the geometry of associativity. Semigroup Forum 74(3), 439–466 (2007)

    Article  MathSciNet  Google Scholar 

  18. Jenei, S.: On the structure of rotation-invariant semigroups. Arch. Math. Log. 42, 489–514 (2003)

    Article  MathSciNet  Google Scholar 

  19. Jenei, S.: Structural description of a class of involutive uninorms via skew symmetrization. J. Log. Comput. 21(5), 729–737 (2011)

    Article  MathSciNet  Google Scholar 

  20. Jenei, S., Montagna, F.: A proof of standard completeness of Esteva and Godo’s monoidal logic MTL. Stud. Log. 70(2), 184–192 (2002)

    Article  Google Scholar 

  21. Jenei, S., Montagna, F.: A classification of certain group-like FL\(_e\)-chains. Synthese 192(7), 2095–2121 (2015)

    Article  MathSciNet  Google Scholar 

  22. Jenei, S., Montagna, F.: Erratum to “a classification of certain group-like FL\(_e\)-chains”. Synthese 193(1), 313–313 (2016)

    Article  MathSciNet  Google Scholar 

  23. Jipsen, P., Montagna, F.: Embedding theorems for classes of GBL-algebras. J. Pure Appl. Algebra 214(9), 1559–1575 (2010)

    Article  MathSciNet  Google Scholar 

  24. Johnstone, P.T.: Stone Spaces. Cambridge University Press, Cambridge (1982)

    MATH  Google Scholar 

  25. Metcalfe, G., Montagna, F.: Substructural fuzzy logics. J. Symb. Log. 72(3), 834–864 (2007)

    Article  MathSciNet  Google Scholar 

  26. Mostert, P.S., Shields, A.L.: On the structure of semigroups on a compact manifold with boundary. Ann. Math. 65, 117–143 (1957)

    Article  MathSciNet  Google Scholar 

  27. Tsinakis, C., Wille, A.M.: Minimal varieties of involutive residuated lattices. Stud. Log. 83(1–3), 407–423 (2006)

    Article  MathSciNet  Google Scholar 

  28. Ward, M., Dilworth, R.P.: Residuated lattices. Trans. Am. Math. Soc. 45, 335–354 (1939)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sándor Jenei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jenei, S. (2018). On the Structure of Group-Like FL\(_e\)-chains. In: Medina, J., et al. Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations. IPMU 2018. Communications in Computer and Information Science, vol 854. Springer, Cham. https://doi.org/10.1007/978-3-319-91476-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91476-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91475-6

  • Online ISBN: 978-3-319-91476-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics