Skip to main content

Modeling Crowd Behavior in a Theater

  • Conference paper
  • First Online:
New Frontiers in Quantitative Methods in Informatics (InfQ 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 825))

Included in the following conference series:

  • 247 Accesses

Abstract

To manage emergencies, it is useful to be able to understand how crowds behave in case of incidents. We modeled, by means of Markovian Agents, the behavior of a crowd in a theater to evaluate the effects of a potentially catastrophic situation in a constrained space. The chosen modeling technique showed to be well fit to help and evaluate, given the nature of a space with significant obstacles and densely occupied by people, what kind of actions should be taken in advance to mitigate the damage in case of problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Almeida, J.E., Rossetti, R.J.F., Coelho, A.L.: Crowd simulation modeling applied to emergency and evacuation simulations using multi-agent systems. CoRR abs/1303.4692 (2013)

    Google Scholar 

  2. Bobbio, A., Cerotti, D., Gribaudo, M., Iacono, M., Manini, D.: Markovian agent models: a dynamic population of interdependent Markovian agents. In: Al-Begain, K., Bargiela, A. (eds.) Seminal Contributions to Modelling and Simulation. SFMA, pp. 185–203. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33786-9_13

    Chapter  Google Scholar 

  3. Castiglione, A., Gribaudo, M., Iacono, M., Palmieri, F.: Modeling performances of concurrent big data applications. Softw. Pract. Experience 45(8), 1127–1144 (2015)

    Article  Google Scholar 

  4. Cerotti, D., Gribaudo, M., Bobbio, A.: Disaster propagation in heterogeneous media via Markovian agents. In: Setola, R., Geretshuber, S. (eds.) CRITIS 2008. LNCS, vol. 5508, pp. 328–335. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03552-4_31

    Chapter  Google Scholar 

  5. Feng, C., Gribaudo, M., Hillston, J.: Performance analysis of collective adaptive behaviour in time and space. Electr. Notes Theoret. Comput. Sci. 318, 53–68 (2015). Twenty-ninth and Thirtieth Annual UK Performance Engineering Workshops (UKPEW)

    Article  Google Scholar 

  6. Gribaudo, M., Iacono, M., Levis, A.: An IoT based monitoring approach for cultural heritage sites: the Matera case. Concurrency Comput. Pract. Experience, 29(11) (2017)

    Article  Google Scholar 

  7. Gribaudo, M., Iacono, M., Manini, D.: Three Layers Network Influence on Cloud Data Center Performances, pp. 621–627 (2016)

    Google Scholar 

  8. Guenther, M.C., Bradley, J.T.: Higher moment analysis of a spatial stochastic process algebra. In: Thomas, N. (ed.) EPEW 2011. LNCS, vol. 6977, pp. 87–101. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24749-1_8

    Chapter  Google Scholar 

  9. Inga, T.: Quantitative analysis of the evacuation system by means of generalized stochastic petri nets. Comput. Sci. J. Moldova 24(2), 184–191 (2016)

    MathSciNet  Google Scholar 

  10. Nakajima, Y., Hotta, M.: A developmental study of cognitive processes in decision making: information searching as a function of task complexity. Psychol. Rep. 64(1), 67–79 (1989)

    Article  Google Scholar 

  11. Page, S.E., Miller, J.H.: Complex Adaptive Systems: An Introduction to Computational Models of Social Life (Princeton Studies in Complexity), kindle edn. Princeton University Press, Princeton (2007)

    Google Scholar 

  12. Santos, G., Aguirre, B.E.: A critical review of emergency evacuation simulation models. In: Proceeding of Conference “Building Occupant Movement During Fire Emergencies”. National Institute of Standards and Technology, Gaithersburg, Maryland, 10–11 June 2004

    Google Scholar 

  13. Tan, L., Hu, M., Lin, H.: Agent-based simulation of building evacuation: combining human behavior with predictable spatial accessibility in a fire emergency. Inf. Sci. 295, 53–66 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Iacono .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barbierato, E., Gribaudo, M., Iacono, M., Levis, A.H. (2018). Modeling Crowd Behavior in a Theater. In: Balsamo, S., Marin, A., Vicario, E. (eds) New Frontiers in Quantitative Methods in Informatics. InfQ 2017. Communications in Computer and Information Science, vol 825. Springer, Cham. https://doi.org/10.1007/978-3-319-91632-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91632-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91631-6

  • Online ISBN: 978-3-319-91632-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics