Skip to main content

IoT - An Opportunity for Autonomous BIM Reconstruction?

  • Conference paper
  • First Online:
Advanced Computing Strategies for Engineering (EG-ICE 2018)

Abstract

While the concepts and technologies of Building Information Modeling (BIM) are on their way to become an industry standard, there is an increasing demand for the digitalization of the existing building stock. Based on our previous work on this subject we present a framework for autonomous BIM reconstruction using an IoT-based approach. We show that it is possible to integrated depth sensing technologies with common devices that move regularly throughout a building. By autonomously conducting several scans of the same region it is possible to enhance the quality of the reconstructed model while reducing the human workload. The use of (semi-)autonomous devices however comes with a trade-off and in this study could not achieve results equal to human-made scans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beetz, J., et al.: Enrichment and preservation of architectural knowledge. In: Münster, S., Pfarr-Harfst, M., Kuroczyński, P., Ioannides, M. (eds.) 3D Research Challenges in Cultural Heritage II. LNCS, vol. 10025, pp. 231–255. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47647-6_11

    Chapter  Google Scholar 

  2. Franz, S., Rüppel, U.: Supporting forensic fire cause analysis with next generation mobile devices by assembling a BIM based on multiple integrated sensor data. In: Proceedings of the 22nd International Workshop on Intelligent Computing in Engineering (2015). http://eg-ice-2015.bwk.tue.nl/proceedings\_online.html

  3. Franz, S., Irmler, R., Rüppel, U.: Collaborative BIM reconstruction on mobile consumer devices. In: Koch, C. (ed.) Digital Proceedings of the 24th International Workshop of the European Group for Intelligent Computing in Engineering, pp. 116–125 (2016). http://www.proceedings.com/35076.html

  4. Nordrum, A.: Popular Internet of Things Forecast of 50 Billion Devices by 2020 is Outdated. IEEE (2016)

    Google Scholar 

  5. Wu, B., Yu, B., Wu, Q., Yao, S., Zhao, F., Mao, W., Wu, J.: A graph-based approach for 3D building model reconstruction from airborne LiDAR point clouds. 9, 92 (2017). https://doi.org/10.3390/rs9010092

  6. Tuttas, S., Stilla, U.: Window detection in sparse point clouds using indoor points. In: ISPRS – International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVIII-3-W22, Copernicus GmbH, pp. 131–136 (2013). https://doi.org/10.5194/isprsarchives-XXXVIII-3-W22-131-2011, https://www.int-arch-photogramm-remote-sensspatial-inf-sci.net/XXXVIII-3-W22/131/2011/

    Article  Google Scholar 

  7. Sohn, G., Huang, X., Tao, X.: Using a binary space partitioning tree for reconstructing polyhedral building models from airborne lidar data. Photogrammetric Engineering and Remote (2008)

    Google Scholar 

  8. Suveg, I., Vosselman, G.: Reconstruction of 3D building models from aerial images and maps 58(3), 202–224 (2004). https://doi.org/10.1016/j.isprsjprs.2003.09.006, http://www.sciencedirect.com/science/article/pii/S0924271603000583

  9. Previtali, M., Scaioni, M., Barazzetti, L., Brumana, R.: A flexible methodology for outdoor/indoor building reconstruction from occluded point clouds. In: ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. II-3, Copernicus GmbH, pp. 119–126 (2014). https://doi.org/10.5194/isprsannals-II-3-119-2014, https://www.isprs-ann-photogramm-remote-sens-spatial-nf-sci.net/II-3/119/2014/

    Article  Google Scholar 

  10. Koch, T., Körner, M., Fraundorfer, F.: Automatic alignment of indoor and outdoor building models using 3D line segments. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 689–697. https://doi.org/10.1109/cvprw.2016.91

  11. Strecha, C., Krull, M., Betschart, S.: The Chillon Project: Aerial/Terrestrial and Indoor Integration (2014). https://pix4d.com/wp-content/uploads/2016/03/Pix4D-White-Paper-Chillon-Project-June2014.pdf

  12. Schindler, K., Bauer, J.: A model-based method for building reconstruction. In: First IEEE International Workshop on Higher-Level Knowledge in 3D Modeling and Motion Analysis, HLK 2003, pp. 74–82 (2003). https://doi.org/10.1109/hlk.2003.1240861

  13. Ochmann, S., Vock, R., Wessel, R., Klein, R.: Automatic reconstruction of parametric building models from indoor point clouds. 54, 94–103 (2016). https://doi.org/10.1016/j.cag.2015.07.008, http://www.sciencedirect.com/science/article/pii/S0097849315001119

  14. Turner, E., Cheng, P., Zakhor, A.: Fast, automated, scalable generation of textured 3D models of indoor. Environments 9(3), 409–421 (2015). https://doi.org/10.1109/JSTSP.2014.2381153

    Article  Google Scholar 

  15. Corso, N., Zakhor, A.: Indoor localization algorithms for an ambulatory human operated 3D mobile mapping system. 5 (12), 6611–6646 (2013). https://doi.org/10.3390/rs5126611, http://www.mdpi.com/2072-4292/5/12/6611

  16. Dumitru, R.-C., Borrmann, D., Nüchter, A.: Interior reconstruction using the 3D hough transform. In: ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XL-5-W1, Copernicus GmbH, pp. 65–72 (2013). https://doi.org/10.5194/isprsarchives-XL-5-W1-65-2013, https://www.int-arch-photogramm-remote-sensspatial-inf-sci.net/XL-5-W1/65/2013/

  17. Du, H., Henry, P., Ren, X., Cheng, M., Goldman, D., Seitz, S.M., Fox, D.: Interactive 3D modeling of indoor environments with a consumer depth camera. In: UbiComp 2011 - Proceedings of the 2011 ACM Conference on Ubiquitous Computing, pp. 75–84 (2011). https://doi.org/10.1145/2030112.2030123

  18. Yue, H., Chen, W., Wu, X., Liu, J.: Fast 3D modeling in complex environments using a single Kinect sensor. 53, 104–111 (2014). https://doi.org/10.1016/j.optlaseng.2013.08.009, https://www.sciencedirect.com/science/article/pii/S0143816613002522

  19. Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: RGB-D mapping: using Kinect-style depth cameras for dense 3D modeling of indoor environments 31(5), 647–663 (2012). https://doi.org/10.1177/0278364911434148

  20. Miljanovic, M., Eiter, T., Egly, U.: Detection of windows in facades using image processing algorithms (2012)

    Google Scholar 

  21. Xiong, X., Adan, A., Akinci, B., Huber, D.: Automatic creation of semantically rich 3D building models from laser scanner data. In: Automation in Construction, vol. 31 (2013). https://doi.org/10.1016/j.autcon.2012.10.006

    Article  Google Scholar 

  22. Okorn, B., Xiong, X., Akinci, B., Huber, D.: Toward automated modeling of floor plans (2010)

    Google Scholar 

  23. Cabral, R., Furukawa, Y.: Piecewise planar and compact floorplan reconstruction from images. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014, pp. 628–635. IEEE Computer Society (2014). https://doi.org/10.1109/cvpr.2014.546

  24. Furukawa, Y., Curless, B., Seitz, S.M., Szeliski, R.: Reconstructing building interiors from images. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 80–87 (2009). https://doi.org/10.1109/iccv.2009.5459145

  25. Zhou, Q.-Y., Koltun, V.: Color map optimization for 3D reconstruction with consumer depth cameras. 33 (4), 155:1–155:10 (2014). https://doi.org/10.1145/2601097.2601134

  26. Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A.J., Kohi, P., Shotton, J., Hodges, S., Fitzgibbon, A.: KinectFusion: real-time dense surface mapping and tracking. In: 2011 10th IEEE International Symposium on Mixed and Augmented Reality, pp. 127–136 (2011). https://doi.org/10.1109/ismar.2011.6092378

  27. Bormann, R., Jordan, F., Li, W., Hampp, J., Hägele, M.: Room segmentation: survey, implementation, and analysis. In: 2016 IEEE International Conference on Robotics and Automation (ICRA) (2016)

    Google Scholar 

  28. Kleiner, A., Rodrigo Baravalle, R., Kolling, A., Pilotti, P., Munich, M.: A solution to room-by-room coverage for autonomous cleaning robots. In: Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada (2017)

    Google Scholar 

  29. Ackerman, E.: Neato Adds Persistent, Actionable Maps to New D7 Robot Vacuum. https://spectrum.ieee.org/automaton/robotics/home-robots/neato-adds-persistent-actionable-maps-to-new-d7-robot-vacuum. Accessed 20 Dec 2017

  30. Khoshelham, K., Elberink, S.O.: Accuracy and resolution of kinect depth data for indoor mapping applications. Sensors 12(2), 1437–1454 (2012). https://doi.org/10.3390/s120201437

  31. Chang, C.-Y., Langel, B., Zhang, M., Koenig, S., Requejo, P., Somboon, N., Sawchuk, A.A., Rizzol, A.A.: Towards pervasive physical rehabilitation using Microsoft Kinect. In: Proceedings of the 2012 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops (2012)

    Google Scholar 

  32. Gabel, M., Gilad-Bachrach, R., Renshaw, E., Schuster, A.: Full body gait analysis with Kinect. In: Proceedings of the 2012 Annual International Conference of the IEEE, Engineering in Medicine and Biology Society (EMBC) (2012). https://doi.org/10.1109/embc.2012.6346340

  33. Zafrulla, Z., Brashear, H., Starner, T., Hamilton, H., Presti, P.: American sign language recognition with the kinect. In: 2011 Proceedings of the 13th International Conference on Multimodal Interfaces (ICMI) (2012). https://doi.org/10.1145/2070481.2070532

  34. Stowers, M., Hayes, M., Bainbridge-Smith, A.: Altitude control of a quadrotor helicopter using depth map from Microsoft Kinect sensor. In: Proceedings of the 2011 IEEE International Conference on Mechatronics (ICM) (2012). https://doi.org/10.1109/icmech.2011.5971311

  35. Product Brief REAL3 image sensor family|infineon. 11|2015. https://www.infineon.com/dgdl/Infineon-REAL3\%20Image\%20Sensor\%20Family-PB-v01\_00-EN.PDF?fileId=5546d462518ffd850151a0afc2302a58. Accessed 20 Dec 2017

  36. Asus ZenFone AR (ZS571KL)|Asus. https://www.asus.com/Phone/ZenFone-AR-ZS571KL/Tech-Specs/. Accessed 20 Dec 2017

  37. Structure Sensor and Structure SDK Developer Information. https://structure.io/developers, Accessed 20 Dec 2017

  38. Orbbec Persee. https://orbbec3d.com/product-persee/. Accessed 20 Dec 2017

  39. Development Kit Brief CamBoard pico flexx|pmd. http://pmdtec.com/picofamily/assets/datasheet/Data-sheet-PMD\_RD\_Brief\_CB\_pico\_flexx\_V0201.pdf. Accessed 20 Dec 2017

  40. Intel RealSense Depth Camera D435. https://click.intel.com/intelr-realsensetm-depth-camera-d435.html Accessed 20 Dec 2017

  41. ZED Mini|Stereolabs. https://www.stereolabs.com/zed-mini/. Accessed 20 Dec 2017

  42. Visvalingam, M., Whyatt, J.D.: Line generalisation by repeated elimination of points. 30(1), 46–51. https://doi.org/10.1179/000870493786962263 (1993)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Irmler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Irmler, R., Franz, S., Rüppel, U. (2018). IoT - An Opportunity for Autonomous BIM Reconstruction?. In: Smith, I., Domer, B. (eds) Advanced Computing Strategies for Engineering. EG-ICE 2018. Lecture Notes in Computer Science(), vol 10863. Springer, Cham. https://doi.org/10.1007/978-3-319-91635-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91635-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91634-7

  • Online ISBN: 978-3-319-91635-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics