Skip to main content

Single and Multiobjective Evolutionary Algorithms for Clustering Biomedical Information with Unknown Number of Clusters

  • Conference paper
  • First Online:
Bioinspired Optimization Methods and Their Applications (BIOMA 2018)

Abstract

This article presents single and multiobjective evolutionary approaches for solving the clustering problem with unknown number of clusters. Simple and ad-hoc operators are proposed, aiming to keep the evolutionary search as simple as possible in order to scale up for solving large instances. The experimental evaluation is performed considering a set of real problem instances, including a real-life problem of analyzing biomedical information in the Parkinson’s disease map project. The main results demonstrate that the proposed evolutionary approaches are able to compute accurate trade-off solutions and efficiently handle the problem instance involving biomedical information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaufman, L., Rousseeuw, P.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York (1990)

    Book  Google Scholar 

  2. Welch, W.: Algorithmic complexity: Three NP- hard problems in computational statistics. J. Stat. Comput. Simul. 15(1), 17–25 (1982)

    Article  MathSciNet  Google Scholar 

  3. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

    Book  MATH  Google Scholar 

  4. Nesmachnow, S.: An overview of metaheuristics: accurate and efficient methods for optimisation. Int. J. Metaheuristics 3(4), 320–347 (2014)

    Article  Google Scholar 

  5. Hruschka, E., Campello, R., Freitas, A., de Carvalho, A.: A survey of evolutionary algorithms for clustering. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 39(2), 133–155 (2009)

    Article  Google Scholar 

  6. Sheng, W., Liu, X.: A hybrid algorithm for k-medoid clustering of large data sets. In: IEEE Congress on Evolutionary Computation, pp. 77–82 (2004)

    Google Scholar 

  7. University of Luxembourg: Parkinson’s disease map project http://wwwen.uni.lu/lcsb/research/parkinson_s_disease_map, November 2017

  8. Fujita, K., et al.: Integrating pathways of Parkinson’s disease in a molecular interaction map. Mol. Neurobiol. 49(1), 88–102 (2014)

    Article  Google Scholar 

  9. Das, S., Abraham, A., Konar, A.: Metaheuristic Clustering. Studies in Computational Intelligence, vol. 178. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-93964-1

    Book  MATH  Google Scholar 

  10. Deng, Y., Bard, J.: A reactive GRASP with path relinking for capacitated clustering. J. Heuristics 17(2), 119–152 (2011)

    Article  Google Scholar 

  11. Cowgill, M., Harvey, R., Watson, L.: A genetic algorithm approach to cluster analysis. Comput. Mathematics Appl. 37(7), 99–108 (1999)

    Article  MathSciNet  Google Scholar 

  12. Bandyopadhyay, S., Maulik, U.: Nonparametric genetic clustering: comparison of validity indices. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 31(1), 120–125 (2001)

    Article  Google Scholar 

  13. Maulik, U., Bandyopadhyay, S., Mukhopadhyay, A.: Multiobjective Genetic Algorithms for Clustering. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-16615-0

    Book  MATH  Google Scholar 

  14. Ripon, K., Tsang, C.H., Kwong, S., Ip, M.K.: Multi-objective evolutionary clustering using variable-length real jumping genes genetic algorithm. In: 18\(^{th}\) International Conference on Pattern Recognition, pp. 3609–3616 (2006)

    Google Scholar 

  15. Handl, J., Knowles, J.: An evolutionary approach to multiobjective clustering. IEEE Trans. Evol. Comput. 11(1), 56–76 (2007)

    Article  Google Scholar 

  16. Korkmaz, E., Du, J., Alhajj, R., Barker, K.: Combining advantages of new chromosome representation scheme and multi-objective genetic algorithms for better clustering. Intell. Data Anal. 10(2), 163–182 (2006)

    Google Scholar 

  17. Deaven, D., Ho, K.: Molecular geometry optimization with a genetic algorithm. Phys. Rev. Lett. 75, 288–291 (1995)

    Article  Google Scholar 

  18. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, Hoboken (2001)

    MATH  Google Scholar 

  19. Ministerio de Vivienda Ordenamiento Territorial y Medio Ambiente (Uruguay): Red de estaciones hidrométricas http://www.mvotma.gub.uy, November 2017

  20. Alcalá, J., et al.: KEEL data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework. J. Multiple-valued Logic Soft Comput. 17(2–3), 255–287 (2010)

    Google Scholar 

  21. Luke, S., et al.: ECJ 23: A Java-based Evolutionary Computation Research System. https://cs.gmu.edu/eclab/projects/ecj. Accessed March 2017

  22. Kaufman, L., Rousseeuw, P.: Clustering by means of medoids. In: Statistical Data Analysis Based on the L1-Norm and Related Methods (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Nesmachnow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Curi, M.E. et al. (2018). Single and Multiobjective Evolutionary Algorithms for Clustering Biomedical Information with Unknown Number of Clusters. In: Korošec, P., Melab, N., Talbi, EG. (eds) Bioinspired Optimization Methods and Their Applications. BIOMA 2018. Lecture Notes in Computer Science(), vol 10835. Springer, Cham. https://doi.org/10.1007/978-3-319-91641-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91641-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91640-8

  • Online ISBN: 978-3-319-91641-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics