Abstract
Cognitive behaviour analysis is considered of high importance with many innovative applications in a range of sectors including healthcare, education, robotics and entertainment. In healthcare, cognitive and emotional behaviour analysis helps to improve the quality of life of patients and their families. Amongst all the different approaches for cognitive behaviour analysis, significant work has been focused on emotion analysis through facial expressions using depth and EEG data. Our work introduces an emotion recognition approach using facial expressions based on depth data and landmarks. A novel dataset was created that triggers emotions from long or short term memories. This work uses novel features based on a non-linear dimensionality reduction, t-SNE, applied on facial landmarks and depth data. Its performance was evaluated in a comparative study, proving that our approach outperforms other state-of-the-art features.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baltru, T., Robinson, P., Morency, L.P.: OpenFace: an open source facial behavior analysis toolkit. In: IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1–10 (2016)
Bettadapura, V.: Face expression recognition and analysis: the state of the art. Technical report arXiv:1203.6722, pp. 1–27 (2012)
Cao, Y., Barrett, D., Barbu, A., Narayanaswamy, S., Yu, H., Michaux, A., Lin, Y., Dickinson, S., Siskind, J.M., Wang, S.: Recognize human activities from partially observed videos. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2658–2665, June 2013
Chaaraoui, A.A., Florez-Revuelta, F.: Optimizing human action recognition based on a cooperative coevolutionary algorithm. Eng. Appl. Artif. Intell. 31, 116–125 (2014)
Chowdhuri, M.A.D., Bojewar, S.: Emotion detection analysis through tone of user: a survey. Emotion 5(5), 859–861 (2016)
Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 681–685 (2001)
Davis, J.W., Tyagi, A.: Minimal-latency human action recognition using reliable-inference. Image Vis. Comput. 24(5), 455–472 (2006)
Ekman, P., Friesen, W.V.: The Facial Action Coding System: A Technique for the Measurement of Facial Movement. Consulting Psychologists Press, San Francisco (1978)
Huang, K.C., Huang, S.Y., Kuo, Y.H.: Emotion recognition based on a novel triangular facial feature extraction method. In: 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–6 (2010)
Izard, C.E.: Human Emotions. Springer, Boston (2013). https://doi.org/10.1007/978-1-4899-2209-0
Kanade, T., Cohn, J.F., Tian, Y.: Comprehensive database for facial expression analysis. In: Fourth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 46–53 (2000)
Koelstra, S., Muehl, C., Soleymani, M., Lee, J.S., Yazdani, A., Ebrahimi, T., Pun, T., Nijholt, A., Patras, I.: DEAP: a database for emotion analysis; using physiological signals. IEEE Trans. Affect. Comput. 3(1), 18–31 (2012)
Kong, Y., Kit, D., Fu, Y.: A discriminative model with multiple temporal scales for action prediction. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 596–611. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_39
Lan, T., Chen, T.-C., Savarese, S.: A hierarchical representation for future action prediction. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 689–704. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_45
Li, K., Fu, Y.: ARMA-HMM: a new approach for early recognition of human activity. In: 2012 21st International Conference on Pattern Recognition (ICPR), pp. 1779–1782, November 2012
Littlewort, G.C., Bartlett, M.S., Lee, K.: Automatic coding of facial expressions displayed during posed and genuine pain. Image Vision Comput. 27(12), 1797–1803 (2009)
Lokannavar, S., Lahane, P., Gangurde, A., Chidre, P.: Emotion recognition using EEG signals. Emotion 4(5), 54–56 (2015)
McKeown, G., Valstar, M., Cowie, R., Pantic, M., Schroder, M.: The semaine database: annotated multimodal records of emotionally colored conversations between a person and a limited agent. IEEE Trans. Affect. Comput. 3(1), 5–17 (2012)
Michel, P., El Kaliouby, R.: Real time facial expression recognition in video using support vector machines. In: Proceedings of the 5th International Conference on Multimodal Interfaces, pp. 258–264 (2003)
Müller-Putz, G.R., Riedl, R., Wriessnegger, S.C.: Electroencephalography (EEG) as a research tool in the information systems discipline: foundations, measurement, and applications. Commun. Assoc. Inf. Syst. 37(46), 911–948 (2015)
Nicolaou, M.A., Gunes, H., Pantic, M.: Continuous prediction of spontaneous affect from multiple cues and modalities in valence-arousal space. IEEE Trans. Affect. Comput. 2(2), 92–105 (2011)
Nicolle, J., Rapp, V., Bailly, K., Prevost, L., Chetouani, M.: Robust continuous prediction of human emotions using multiscale dynamic cues. In: 14th ACM International Conference on Multimodal Interaction, pp. 501–508 (2012)
Pantic, M., Valstar, M., Rademaker, R., Maat, L.: Web-based database for facial expression analysis. In: IEEE International Conference on Multimedia and Expo, pp. 317–321 (2005)
Patras, I., Pantic, M.: Particle filtering with factorized likelihoods for tracking facial features. In: Sixth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 97–102 (2004)
Petrantonakis, P.C., Hadjileontiadis, L.J.: Emotion recognition from brain signals using hybrid adaptive filtering and higher order crossings analysis. IEEE Trans. Affect. Comput. 1, 81–97 (2010)
Ryoo, M.S.: Human activity prediction: early recognition of ongoing activities from streaming videos. In: International Conference on Computer Vision, ICCV, pp. 1036–1043, November 2011
Sariyanidi, E., Gunes, H., Cavallaro, A.: Automatic analysis of facial affect: a survey of registration, representation, and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(6), 1113 (2015)
Sariyanidi, E., Gunes, H., Gökmen, M., Cavallaro, A.: Local Zernike moment representation for facial affect recognition. In: British Machine Vision Conference (2013)
Sohaib, A.T., Qureshi, S., Hagelbäck, J., Hilborn, O., Jerčić, P.: Evaluating classifiers for emotion recognition using EEG. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) AC 2013. LNCS (LNAI), vol. 8027, pp. 492–501. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39454-6_53
Soleymani, M., Asghari-Esfeden, S., Fu, Y., Pantic, M.: Analysis of EEG signals and facial expressions for continuous emotion detection. IEEE Trans. Affect. Comput. 7(1), 17–28 (2016)
Soleymani, M., Lichtenauer, J., Pun, T., Pantic, M.: A multimodal database for affect recognition and implicit tagging. IEEE Trans. Affect. Comput. 3(1), 42–55 (2012)
Szwoch, M., Pieniążek, P.: Facial emotion recognition using depth data. In: 2015 8th International Conference on Human System Interaction (HSI), pp. 271–277, June 2015
van Der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)
Vieriu, R.L., Tulyakov, S., Semeniuta, S., Sangineto, E., Sebe, N.: Facial expression recognition under a wide range of head poses. In: 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), vol. 1, pp. 1–7, May 2015
Vijayan, A.E., Sen, D., Sudheer, A.P.: EEG-based emotion recognition using statistical measures and auto-regressive modeling. In: IEEE International Conference on Computational Intelligence and Communication Technology (CICT), vol. 14, no. 1, pp. 587–591 (2015)
Weninger, F., Wöllmer, M., Schuller, B.: Emotion recognition in naturalistic speech and language-a survey. In: Konar, A., Chakraborty, A. (eds.) Emotion Recognition: A Pattern Analysis Approach, pp. 237–267. Wiley, Hoboken (2015)
Wöllmer, M., Eyben, F., Reiter, S., Schuller, B., Cox, C., Douglas-Cowie, E., Cowie, R.: Abandoning emotion classes-towards continuous emotion recognition with modelling of long-range dependencies. In: Interspeech, pp. 597–600 (2008)
Yan, W.J., Li, X., Wang, S.J., Zhao, G., Liu, Y.J., Chen, Y.H., Fu, X.: CASME II: an improved spontaneous micro-expression database and the baseline evaluation. PloS One 9(1), e86041 (2014)
Zhao, G., Pietikäinen, M.: Boosted multi-resolution spatiotemporal descriptors for facial expression recognition. Pattern Recogn. Lett. 30(12), 1117–1127 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Montenegro, J.M.F., Villarini, B., Gkelias, A., Argyriou, V. (2018). Cognitive Behaviour Analysis Based on Facial Information Using Depth Sensors. In: Wannous, H., Pala, P., Daoudi, M., Flórez-Revuelta, F. (eds) Understanding Human Activities Through 3D Sensors. UHA3DS 2016. Lecture Notes in Computer Science(), vol 10188. Springer, Cham. https://doi.org/10.1007/978-3-319-91863-1_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-91863-1_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-91862-4
Online ISBN: 978-3-319-91863-1
eBook Packages: Computer ScienceComputer Science (R0)