Skip to main content

Learning Gait Parameters for Locomotion in Virtual Reality Systems

  • Conference paper
  • First Online:
Understanding Human Activities Through 3D Sensors (UHA3DS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10188))

Abstract

Mechanical repositioning is a locomotion technique that uses a mechanical device (i.e. locomotion interface), such as treadmills and pedaling devices, to cancel the displacement of a user for walking on the spot. This technique is especially useful for virtual reality (VR) systems that use large-scale projective displays for visualization. In this paper, we present a machine learning approach for developing a mechanical repositioning technique based on a 1-D treadmill for interacting with a unique new large-scale projective display, named as the Wide-Field Immersive Stereoscopic Environment (WISE). We also assessed the usability of the proposed approach through a novel user study that asked participants to pursue a rolling ball at variable speed in a virtual scene. Our results show that participants differ in their ability to carry out the task. We provide an explanation for the variable performance of the participants based on the locomotion technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Robinett, W., Holloway, R.: Implementation of flying, scaling and grabbing in virtual worlds. In: Proceedings of Symposium on I3D 1992, pp. 189–192. ACM (1992)

    Google Scholar 

  2. Laviola JR, J.J., Feliz, D.A., Keefe, D.F. Zeleznik, R.C.: Hands-free multi-scale navigation in virtual environments. In: Proceedings of Symposium on I3D 2001, pp. 9–15. ACM (2001)

    Google Scholar 

  3. Slater, M., Steed, A., Usoh, M.: The virtual treadmill: a naturalistic metaphor for navigation in immersive virtual environments. In: Göbel, M. (ed.) Virtual Environments 1995. Eurographics. Springer, Vienna (1995). https://doi.org/10.1007/978-3-7091-9433-1_12

    Google Scholar 

  4. Templeman, J., Denbrook, P., Sibert, L.: Virtual locomotion: walking in place through virtual environments. Presence 8(6), 598–617 (1999)

    Article  Google Scholar 

  5. Yan, L., Allison, R.S., Rushton, S.K.: New simple virtual walking method-walking on the spot. In: Proceedings of 8th Annual IPT Symposium (2004)

    Google Scholar 

  6. Wendt, J.D., Whitton, M.C., Brooks, F.P.: GUD WIP: gait-understanding-driven walking-in-place. In: Proceedings of IEEE VR, pp. 51–58 (2010)

    Google Scholar 

  7. Razzaque, S., Kohn, Z., Whitton, M.C.: Redirected walking (short paper presentation). In: Eurographics (2001)

    Google Scholar 

  8. Nilsson, N.C., Serafin, S., Laursen, M.H., Pedersen, K.S., Sikstrom, E., Nordahl, R.: Tapping-In-Place: increasing the naturalness of immersive walking-in-place locomotion through novel gestural input. In: IEEE Symposium on 3D UI, pp. 31–38 (2013)

    Google Scholar 

  9. Hollerbach, J.M.: Locomotion interfaces. In: Handbook of Virtual Environments: Design, Implementation, and Applications, pp. 239–254. Lawrence Erlbaum Assoc., Inc. (2002)

    Google Scholar 

  10. Souman, J.L., Robuffo Giordano, P., Schwaiger, M., Frissen, I., Thummel, T., Ulbrich, H., De Luca, A., Bulthoff, H.H., Ernst, M.O.: Cyberwalk: Enabling unconstrained omnidirectional walking through virtual environments. ACM Trans. Appl. Percept. 8, 4 (2001)

    Google Scholar 

  11. Iwata, H.: Walking about virtual environments on an infinite floor. In: Proceedings of IEEE VR, pp. 286–293 (1999)

    Google Scholar 

  12. Iwata, H., Yano, H., Nakaizumi, F.: Gait master: a versatile locomotion interface for uneven virtual terrain. In: Proceedings of IEEE VR, pp. 131–137 (2001)

    Google Scholar 

  13. Allison, R.S., Harris, L.R., Jenkin, M., Pintilie G., Redlick, F., Zikovitz, D.C.: First steps with a rideable computer. In: Proceedings of IEEE VR, pp. 169–175 (2000)

    Google Scholar 

  14. Medina, E., Fruland, R., Weghorst, S.: Virtusphere: walking in a human size VR “Hamster Ball”. Proc. Hum. Fact. Ergon. Soc. Annu. Meet. 52(27), 2102–2106 (2008)

    Article  Google Scholar 

  15. Park, H.J., Lee, H.J., Kang, T.H., Moon, J.I.: Study on automatic speed adaptation treadmills. In: 15th ICCAS, pp. 1898–1900 (2015)

    Google Scholar 

  16. von Zitzewitz, J., Bernhardt, M., Riener, R.: A novel method for automatic treadmill speed adaptation. IEEE Trans. Neural Syst. Rehabil. Eng. 15(3), 401–409 (2007)

    Article  Google Scholar 

  17. Souman, J.L., Giordano, P.R., Frissen, I., De Luca, A., Ernst, M.O.: Making virtual walking real: Perceptual evaluation of a new treadmill control algorithm. ACM Trans. Appl. Percept. 7, 2 (2010)

    Article  Google Scholar 

  18. Su, S.W., Wang, L., Celler, B.G., Savkin, A.V.: Heart rate control during treadmill exercise. In: 27th Annual International Conference in EMBS, pp. 2471–2474 (2005)

    Google Scholar 

  19. Yoon, J., Park, H.S., Damiano, D.L.: A novel walking speed estimation scheme and its application to treadmill control for gait rehabilitation. J. Neuroeng. Rehab. 9, 62 (2012)

    Article  Google Scholar 

  20. Park, J., Patel, A., Curtis, D., Teller, S., Ledlie, J.: Online pose classification and walking speed estimation using handheld devices. In: Proceedings of ACM Conference UbiComp, pp. 113–122 (2012)

    Google Scholar 

  21. Rose, J., Gamble, J.G.: Human Walking. Williams & Wilkins, Baltimore (1994)

    Google Scholar 

  22. Maneewongvatana, S., Mount, D.M.: On the efficiency of nearest neighbor searching with data clustered in lower dimensions. In: Proceedings of ICCS 2001, pp. 842–851 (2001)

    Chapter  Google Scholar 

  23. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Inf. Process. Manage. 45(4), 427–437 (2009)

    Article  Google Scholar 

  24. Vijayakar, A., Hollerbach, J.M.: A proportional control strategy for realistic turning on linear treadmills. In: Proceedings of 10th Symposium on HAPTICS, pp. 231–238 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. Allison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, J., Allison, R.S. (2018). Learning Gait Parameters for Locomotion in Virtual Reality Systems. In: Wannous, H., Pala, P., Daoudi, M., Flórez-Revuelta, F. (eds) Understanding Human Activities Through 3D Sensors. UHA3DS 2016. Lecture Notes in Computer Science(), vol 10188. Springer, Cham. https://doi.org/10.1007/978-3-319-91863-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91863-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91862-4

  • Online ISBN: 978-3-319-91863-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics