Abstract
Over the last years, the affordance concept has attracted more and more attention in agent-based simulation. Due to its grounding in cognitive science, we assume that it may help a modeller to capture possible interactions in the modelling phase as it can be used to clearly state under which circumstances an agent might execute a particular action with a particular environmental entity.
In this discussion paper we clarify the concept of affordance and introduce a light-weight formalization of the notions in a way appropriate for agent-based simulation modelling. We debate its suitability for capturing interaction compared to other approaches.
This paper has already been published in: \(\copyright \) Springer International Publishing AG 2017. G. Sukthankar and J. A. Rodriguez-Aguilar (Eds.): AAMAS 2017 Best Papers, LNAI 10642, pp. 222-238, 2017. https://doi.org/10.1007/978-3-319-71682-4_14.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Our idea of an affordance schema is on a higher abstraction level than what W. Kuhn called “Image Schema” in [26]. He describes an environmental constellation using spatial categories and connects them to a process that they afford.
References
Afoutni, Z., Courdier, R., Guerrin, F.: A multiagent system to model human action based on the concept of affordance. In: 4th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH), 8 p. (2014)
Amblard, F., Bouadjio-Boulic, A., Gutiérrez, C.S., Gaudou, B.: Which models are used in social simulation to generate social networks? A review of 17 years of publications in JASS. In: 2015 Winter Simulation Conference (WSC), pp. 4021–4032 (2015)
Awaad, I., Kretschmar, G., Hertzberg, J.: Finding ways to get the job done: an affordance-based approach. In: 24th International Conference on Automated Planning and Scheduling (ICAPS 2014), Portsmouth, USA, June 2014, pp. 499–503 (2014)
Bauer, B., Müller, J.P., Odell, J.: Agent UML: a formalism for specifying multiagent software systems. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000. LNCS, vol. 1957, pp. 91–103. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44564-1_6
Bauer, B., Odell, J.: Uml 2.0 and agents: how to build agent-based systems with the new UML standard. Eng. Appl. Artif. Intell. 18(2), 141–157 (2005)
Bersini, H.: UML for ABM. J. Artif. Soc. Soc. Simul. 15(1), 9 (2012)
Chella, A., Cossentino, M., Faso, U.L.: Applying UML use case diagrams to agents. In: Proceedings of the AI*IA 2000 Conference, pp. 13–15 (2000)
Ferber, J.: Multi-Agent System: An Introduction to Distributed Artificial Intelligence. Addison Wesley Longman, Boston (1999)
Ferber, J., Gutknecht, O.: A meta-model for the analysis and design of organizations in multi-agent systems. In: Proceedings of the 3rd International Conference on Multi Agent Systems (ICMAS1998), Washington, DC, USA, pp. 128–135. IEEE (1998)
Ferber, J., Müller, J.-P.: Influences and reactions: a model of situated multiagent systems. In: Proceedings of the ICMAS’96. AAAI Press (1996)
Ferdinandus, G.R., Peeters, M., van den Bosch, K., Meyer, J.-J.C.: Automated scenario generation - coupling planning techniques with smart objects. In: Proceedings of the 5th International Conference on Computer Supported Education, Aachen, Germany, pp. 76–81 (2013)
Ghorbani, A., Bots, P., Dignum, V., Dijkema, G.: MAIA: a framework for developing agent-based social simulations. J. Artif. Soc. Soc. Simul. 16(2), 9 (2013)
Gibson, J.J.: The Ecological Approach to Visual Perception. Houghton Mifflin, Boston (1979)
Hübner, J., Sichman, J.F., Boissier, B.: Developing organised multi-agent systems using the MOISE+ model: programming issues at the system and agent levels. Int. J. Agent-Oriented Soft. Eng. 1(3/4), 370–395 (2007)
Janowicz, K., Scheider, S., Pehle, T., Hart, G.: Geospatial semantics and linked spatiotemporal data - past, present, and future. Semant. Web 3(4), 321–332 (2012)
Jonietz, D.: From space to place - a computational model of functional place. University of Augsburg, Geographical Information Science, Thesis (2016)
Jonietz, D., Timpf, S.: An affordance-based simulation framework for assessing spatial suitability. In: Tenbrink, T., Stell, J., Galton, A., Wood, Z. (eds.) COSIT 2013. LNCS, vol. 8116, pp. 169–184. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-01790-7_10
Jonietz, D., Timpf, S.: On the relevance of Gibson’s affordance concept for geographical information science. Cogn. Process. Int. Q. Cogn. Sci. 16(1(Suppl.)), 265–269 (2015)
Joo, J., Kim, N., Wysk, R.A., Rothrock, L., Son, Y.-J., Oh, Y.-G., Lee, S.: Agent-based simulation of affordance-based human behaviors in emergency evacuation. Simul. Model. Pract. Theor. 13, 99–115 (2013)
Jordan, T., Raubal, M., Gartrell, B., Egenhöfer, M.J.: An affordance-based model of place in GIS. In: Poiker, T., Chrisman, N. (eds.) Proceedings of the 8th International Symposium on Spatial Data Handling, Vancouver, CA, pp. 98–109 (1998)
Kapadia, M., Singh, S., Hewlett, W., Faloutsos, P.: Egocentric affordance fields in pedestrian steering. In: Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games (I3D ’09), pp. 15–223, New York, NY, USA. ACM (2009)
Klügl, F.: Using the affordance concept for model design in agent-based simulation. Ann. Math. Artif. Intell. 78, 21–44 (2016)
Ksontini, F., Mandiau, R., Guessoum, Z., Espié, S.: Affordance-based agent model for traffic simulation. J. Auton. Agents Multiagent Syst. 29(5), 821–849 (2015)
Kubera, Y., Mathieu, P., Picault, S.: Everything can be agent! In: van der Hoek, W., Kaminka, G., Lespérance, Y., Luck, M., Sen, S. (eds.) Proceedings of 9th International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), 2010, Toronto, Canada, p. 1547f (2010)
Kubera, Y., Mathieu, P., Picault, S.: IODA: an interaction-oriented approach for multi-agent based simulations. Auton. Agent. Multi-Agent Syst. 23(3), 303–343 (2011)
Kuhn, W.: An image-schematic account of spatial categories. In: Winter, S., Duckham, M., Kulik, L., Kuipers, B. (eds.) COSIT 2007. LNCS, vol. 4736, pp. 152–168. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74788-8_10
Norman, D.A.: The Invisible Computer. MIT Press, Cambridge (1999)
Paris, S., Donikian, S.: Activity-driven populace: a cognitive approach to crowd simulation. IEEE Comput. Graph. Appl. 29(4), 34–43 (2009)
Raubal, M.: Ontology and epistemology for agent-based wayfinding simulation. Int. J. Geogr. Inf. Sci. 15, 653–665 (2001)
Raubal, M., Moratz, R.: A functional model for affordance-based agents. In: Rome, E., Hertzberg, J., Dorffner, G. (eds.) Towards Affordance-Based Robot Control. LNCS (LNAI), vol. 4760, pp. 91–105. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77915-5_7
Şahin, E., Çakmak, M., Doğar, M.R., Uğur, E., Üçoluk, G.: To afford or not to afford: a new formalism of affordances towards affordance-based robot control. Adapt. Behav. 15(4), 447–472 (2007)
Stoffregen, T.: Affordances as properties of the animal environment system. Ecol. Psychol. 15(2), 115–134 (2003)
Timpf, S.: Simulating place selection in urban public parks. In: International Workshop on Social Space and Geographic Space, SGS 2007, Melbourne (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Klügl, F., Timpf, S. (2018). Approaching Interactions in Agent-Based Modelling with an Affordance Perspective. In: El Fallah-Seghrouchni, A., Ricci, A., Son, T. (eds) Engineering Multi-Agent Systems. EMAS 2017. Lecture Notes in Computer Science(), vol 10738. Springer, Cham. https://doi.org/10.1007/978-3-319-91899-0_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-91899-0_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-91898-3
Online ISBN: 978-3-319-91899-0
eBook Packages: Computer ScienceComputer Science (R0)