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Abstract. Context-aware systems are capable of perceiving the physi-
cal environment where they are deployed and adapt their behavior, de-
pending on the available information and how it is processed. Ambi-
ent Intelligence (AmI) represents context-aware environments that re-
act and respond to the requirements of people. While different models
can be used to implement adaptive context-aware systems, BDI multi-
agent systems are especially suitable for that, due to their belief-based
reasoning. Different BDI architectures, however, use different reasoning
processes, therefore providing different adaptability levels. In each archi-
tecture, contextual information is adherent to a specific belief structure,
and the context-related capabilities may vary. We propose a framework
that can be used by BDI agents in a multi-architecture scenario in order
to modularly acquire context-aware capabilities, such as learning, addi-
tional reasoning abilities, and interoperability. When this framework is
combined with an existing BDI agent, the result is an augmented agent.

Keywords: context-aware systems, AmI, multiagent systems, BDI, con-
textual planning, learning

1 Introduction

Ambient Intelligence (AmI) [1] is a term originally created by the European
Commission in 2001 [2] and represents the merging between physical environ-
ments and information technology, where embedded electronic devices can per-
ceive and respond to the presence of people. When electronic devices or systems
capture and use information on the surrounding environment to perform their
functions, the interactions between these systems and the individuals present in
the environment can be modified and refined in order to adapt and respond in
a specific manner. The adaptability level attained by these systems and devices
depend on how the surrounding environment information is collected, and the
information collection process usually involves different technologies: electronic
sensors (temperature, etc.), wireless networks, and human-centered interfaces
are among them.



There are a few aspects, however, that need to be addressed to make this
adaptability possible. One of these aspects refers to the information structure:
it is necessary that information from the environment can be described and
structured in order to be used by the adaptability process involved. Devices
and systems capable of capturing this information and use it to adapt their
functions accordingly are called context-aware systems [3], while information
from the environment itself can be referred to as context [4]. Context can be
represented and used in different ways – usually depending on which information
dimensions or aspects are relevant to the context-aware system or device using
it [5,6]. Different systems, however, present different data needs - both in terms
of structure and relevance. Another aspect is the level of complexity involved
when these systems interact among themselves. The addition or subtraction of
another context-aware system can trigger a certain level of cooperation, which
impacts the adaptability process.

Agent architectures are among the ones that can be used by context-aware
systems [7]. The belief-desire-intention (BDI) architecture [8] is of particular
interest due to its inherent use of contextual information. In fact, the context
about the environment in which a BDI agent is situated is represented in its
beliefs. Beliefs are used to determine its intentions - what the agent has cho-
sen to do, and how committed it is to that choice [9]. However, different BDI
architectures use different belief structures - therefore, translating context into
beliefs is a problem highly dependent on the agent’s internal architecture. Thus,
deploying agents implemented according to different BDI architectures into the
same environment can become a challenging problem.

Deploying multiple BDI architectures into multiple environment present chal-
lenges related to all interactions between the agents and the environments. Es-
tablishing communication between different agents can be achieved through the
use of a common communication protocol1. Nevertheless, existing agents de-
ployed to new environments may require changes in its belief structure in order
to process the new context structure. Adapting an existing agent to a new en-
vironment is not only a matter of abstracting the available information, but
also making sense of it - which also impacts the planning process used by the
agent. When the same agents are used across different environments, multiple
abstractions are required, resulting in a scalability problem.

Adding new functionalities to one specific agent could also require modifi-
cations in the other agents, as well as in the related environments (i.e., deploy-
ing coordination systems). Functionalities such as collective learning, experience
sharing, or context-based planning mechanisms such as CPS-L [10] demand even
more complexity to be added to the integration model used by the different
agents.

With these considerations in mind, we propose a framework that can be used
by different BDI agent architectures in order to augment them with context-
aware capabilities. The objective of this framework is to serve as an initial step
towards solving the problem of creating a multi-BDI environment that can be

1 http://www.fipa.org/specs/fipa00001/



used in AmI scenarios. The initial version of this framework consists of two
modules. The first module addresses the considerations regarding contextual in-
formation, augmenting the agent with context-aware capabilities through the
use of multiple information sources and structures. The second module (CPS)
is an adaptation of the aforementioned CPS-L, which makes the agent capable
not only of learning from its previous experiences, but of sharing these experi-
ences among other agents. When these modules are combined with an existing
BDI agent, the result is an augmented agent, with modular and inter-operable
context-aware and learning capabilities. In the next sections we will refer to BDI
agents simply as ”agents”.

It is important to mention that this framework does not replace or externalize
the belief reasoning process. Depending on the deployment environment, context
information may not be available all the time. In this case, the use of a context
module may relieve the agent from continuously monitoring the environment.
Context can be cached, preprocessed, and delivered to the agent, ready to be
used in its reasoning process. Similarly, the CPS module makes the planning
process more efficient by selecting in advance which plans are feasible. Agents
are treated as black boxes, and the framework facilitates the integration between
different contexts and agent architectures.

This paper is organized as follows: Section 2 details the general considerations
used when constructing the proposed model. The augmented agent model is
presented in Section 3, and the framework constructed from this model is detailed
in section 4. In Section 5, we present the augmented agent implementation.
Section 6 describes the application of a proof-of-concept in order to illustrate
our work. Discussions and related work on the modeling and use of AmI agents
and systems is presented in Section 7. In Section 8 we present our conclusions
on the proposed model.

2 General considerations

Since the framework is intended to be used in conjunction with different BDI
architectures deployed into context-aware scenarios, we focused our efforts on
understanding the origins, limitations, and aspects related to the processing of
the contextual information before it is used by the agent. The process of physi-
cally gathering contextual information is not part of the scope of this work, nor
is comparing existing BDI architecture implementations. We divided our consid-
erations into (i) the context itself (the presentation and relevance of contextual
information available); (ii) processing contextual information before delivering it
to the agent; and (iii) the BDI agent planning process, since one of the proposed
modules is related to it.

2.1 Context

Contextual information can be collected and distributed differently. It can also
be detailed and organized in different levels, depending on its intended use.



Different constraints can also determine its distribution model, such as inter-
operability with a preexistent communication model or bandwidth limitations.
Therefore, the process of collecting and distributing context data can be bro-
ken into (i) Gathering (what is measured and how it is done), (ii) Aggregation
(consolidation of collected data into information), (iii) Representation (structure
used to represent the information), and (iv) Transmission (protocols and data
contracts used in communication).

Aggregation is the most relevant aspect related to context, since information
can be organized in different ways, depending on its purpose. This organization
can also differ across different information dimensions. Mobile devices, for exam-
ple, use different sensors to gather data mostly related to physical environment
aspects, such as localization and acceleration. Information on the social informa-
tion dimension is limited or non-existent. On the other hand, identification cards
can retain organizational data – such as role in the company, unique identifica-
tion record, and clearance level. In this case, the social information dimension is
more detailed than in the previous one, while the physical information dimension
is almost non-existent.

Different information dimensions can be used in different cases, mostly de-
pending on what is being captured by which sensors. As a term, ”information
domain” is broadly used to refer to different aspects and purposes of informa-
tion organization [11]. Generally speaking, information domains can be used to
represent deterministic sets of information that are different among themselves
in both content and organization [12]. Depending on how the information is or-
ganized, the content - or what is being represented - can be determined by its
own representation. An ontology, for example, can be defined as a set of terms
of interest in an information domain, along with the relationships among these
terms [13].

In the scope of this work, context can be comprised of different information
domains. Sensor data gathered and aggregated by an internal sensor network,
for example, can be considered as an information domain within a given envi-
ronment. Another information domain could be represented by user preferences
stored and organized in a mobile device. When the user is in the environment,
the contextual information is composed by both information domains - which
can be used by an agent in its reasoning process.

Since our ultimate goal is to simplify the use of context by agents, it is im-
portant that we can be able to separate the information into different, treatable
sets. These sets must be identified - in order to be distinguishable among them-
selves - and have a clear structure representation of the information they contain.
Representing the information involves not only the data structure used, but also
how the information is described. Various expressions can be used by differ-
ent domains to convey information, which requires different processing rules for
each domain. Data structures can also differ across domains. A sensor gateway,
for example, can provide information in different formats – e.g. a hierarchically
structured database (XML), a single text file or a serialized (binary) structure. A
given format, however, doesn’t necessarily determine how the information itself



is described: XML files use named elements to separate data, while a text file
may require syntactic interpretation.

2.2 Information processing

Occasionally, information processing may be required before the agent can use
the contextual information available. It is not uncommon for an agent to use
discretized beliefs for its reasoning process. For instance, instead of relying on raw
geographical information such as GPS coordinates, an agent may use determined
known locations within a limited region (buildings, zones, rooms) on its planning
process.

While associating discretized information and parametrized data may seem
trivial, it has to be done at some point - and it is necessary to be taken into
account in the framework modeling process. As an advantage, isolating the in-
formation processing from the agent implementation is beneficial in terms of
overall implementation and change management. Different information domains
may require different parametrization implementations for the same discretized
information set, which may require different effort levels.

Another information process aspect to be taken into account is learning. De-
spite being able to reason over beliefs related to the environment in which they
are situated, not all BDI architectures possess specific mechanisms or functional-
ities that allow agents to learn from past experiences or to adapt to new, different
situations. Our approach towards learning is directly related to the contextual
planning system, since the learning process is used as a tool for determining the
best course of actions based on previous experiences. In a broader perspective,
different learning processes can be used with different sets of experiences.

A specific learning process can be different according to which part of the
context is relevant to the actions related to the experiences being processed. In
that sense, separating the contextual information translation into beliefs from
the agent architecture allows the implementation of learning functionalities asso-
ciated with different information domains. While fuzzy techniques may be used
to determine ”hot” and ”cold” temperatures, different algorithms may be ap-
plied to displacement information in order to establish optimal routes according
to associated context conditions, for example.

Generally speaking, processing contextual information before delivering it to
the agent means that its belief base is no more a pure reflection of the context
as it exists; instead, it is a filtered perception of the surrounding environment.
In that sense, it can be seen as a contextual filter to the agent. From the agent’s
perspective, having such filter allows for abstracting anything other than its own
internal reasoning process. From an architectural perspective, this filter allows
for other processing modules to use the refined contextual information separately
from the agent.



2.3 Planning

The planning process used by a BDI agent is an algorithm that uses the infor-
mation it possesses in order to generate a sequence of actions. These actions will
eventually allow the agent to achieve specific goals (intentions to which the agent
is committed). Planning algorithms usually adhere to the following behavior:

• The agent receives information about the environment, which is used to update
its own beliefs;

• Desires are updated according to a given criteria (i.e., achievability), and in-
tentions are generated from the updated beliefs and desires;

• A sequence of existing actions (plan) is assembled in order to achieve the gen-
erated intentions. The assembly process is part of the reasoning process, but
the existing actions must be provided beforehand (usually by the program-
mer that implemented the agent). Plans can be composed by a single action,
which also means that plans can be composed of sub-plans.

After the plans are generated, the agent executes them and observes their
consequences (a new environment observation), updating its plans through the
same process if necessary.

While different existing BDI implementations are based on this model (such
as JADEX and Jason), it can also be modified in order to achieve different goals.
In that sense, Chaouche et al. [14] proposed a planning management mechanism
to be used in conjunction with contextual information in order to optimize the
agent’s planning process. This mechanism was intended to function as a pre-
dictive service, using contextual information in order to verify which actions
(among the existing actions known by the agent) are feasible. That would allow
the planning mechanism - denominated Contextual Planning System (CPS) - to
propose an optimal plan to be executed by the agent.

As we mentioned before, the framework proposed in this work is intended to
be used with existing BDI architectures. Because of that, it is not our intention
to re-implement the agent’s reasoning process, or to replace it with our own rea-
soning mechanism. However, the CPS mechanism was originally intended to be
used in AmI-related scenarios, which involves a high level of context awareness.
This is interesting from the context-aware perspective, since the mechanism uses
contextual information to determine the feasibility of the agent’s actions. With
that in mind, we decided to adapt this mechanism into our framework to be used
as an aid to the agent. The CPS framework module will be explained in further
detail in the next paragraphs.

3 Augmented agents model

With the aforementioned considerations in mind, we propose the following model
for an augmented agent (Figure 1). We adopted a modular design to accommo-
date different BDI architectures within the proposed model.



Fig. 1. Augmented agent model in perspective

All contextual information (context) is modeled as a set of different infor-
mation domains, structured as described before. The module responsible for
translating the contextual information received and applying any processing re-
quired before delivering it to the agent is called Context Filter. The CPS mod-
ule, responsible for verify the feasibility of plans for the agent, is also shown. All
modules share an embedded database.

The Information Broker is responsible for orchestrating the other modules,
as well as retrieving the BDI state from the agent and providing it with the
generated plans and the expected events. These events are the result of the
context filtering, and they are presented as the agent would expect from an
external perception.

This modular design brings benefits to new implementations, such as loose
coupling, orchestration, re-usability, and parametrization. Loose coupling is guar-
anteed through the separation of the framework modules from the agent imple-
mentation. While the context processing module can handle several information
domains, the processed contextual information is delivered to the agent in a
form that it already expects. It also allows for the different modules to be or-
chestrated through the implementation of a central communication and process
coordinator. Also, any module changes or new module implementations remain
transparent to the agent.

Using an internal database also facilitates re-usability and parametrization.
Specifications related to information domains and learning algorithms can be
re-used across existing framework deployments, for example. Additionally, pa-
rameters can be modified or transferred to another agent. Historical data can
also be persisted and used to further increase the agent’s capabilities.

Modularizing and implementing an extensible generic outer layer to be used
by different agent architectures is a relatively complex task. While modularizing
a software layer and assigning responsibilities to its different components can be
done by the use of existing process patterns or established models, implementing
new modules within an existing system may be much more challenging. Orches-
tration schemes must be designed for change, and the information flow must be



flexible enough in order to be altered with minimal effort. As mentioned before,
there may also be limitations related to computational costs and deployment
environments.

Design requirements were defined to instantiate the proposed model con-
sidering the aforementioned aspects. These requirements are listed in Table 1:

Table 1. Design requirements for the proposed model

Requirement Description

R1
Loose-coupled component modularization within the framework
should be used whenever possible.

R2
The framework should fit an internal database to be used by each
of the modules in a on-need basis. Any persisted data should be
retrievable, modifiable, and shareable.

R3

Different information sources and processing rules should be sup-
ported in order to allow for multiple, heterogeneous information
domains. The addition of new information domains to an exist-
ing process should be as parametrized as possible.

R4

Different learning algorithms should be supported within the
CPS. The use of CPS or its learning algorithms should also be
optional, since computational constraints on existing systems
may prevent its practical use.

R5

Module orchestration should be as simplified as possible. While
the addition of new modules may not exempt new code imple-
mentation, the inter-module dependency should be kept at a
minimal.

Providing an internal database (R2) allows for a higher level of abstraction
between the Information Broker and the orchestrated models. The database uses
and its relationship with the other modules will be described in the following
paragraphs, along with details on each of the modules presented.

The third requirement (R3) involved defining the context structure to be used
by the framework. While accounting for different information domains within a
context is relatively simple, there’s the matter of establishing a structure model
for a single information domain. For that purpose - and with the considerations
presented in mind - we defined the following structure:

• Identification: refers to a local identifier for the information domain, unique
for a given environment. While it is important for the agent to distinguish
between different information domains, it is reasonable to assume that a
global unique identifier may prove difficult to be implemented.

• Grammar: represents the language used within the information domain. Due
to the considerations above, choosing a grammar over a simple reference
matrix for representing the language used within the information domain
allows for more flexible information usage scenarios.



• I/O: refers to communication metadata associated with the information do-
main, such as data structure (XML, text, binary) and channel endpoints
(REST endpoints, etc.).

In the information domain structure presented above, it is important to no-
tice that identifying communication metadata have certain advantages for the
framework as a whole. As mentioned before, processing the contextual informa-
tion before handling it to the agents is also part of the objective of the proposed
framework. In scenarios where computational power or bandwidth is limited,
for example, having this information available at a higher level may represent
substantial gains in terms of communication efficiency and data processing.

It is also important to mention that in order to abide to the desired level
of abstraction, the BDI architecture taken into consideration is as generic as
possible [15]. The agent represented in the next section is an adaptation from
the BDI architecture model presented in [16].

4 Framework architecture

The next paragraphs detail the proposed framework architecture, along with
each of its components. These components, once combined, produce the struc-
ture shown in Figure 2. As a framework, its intended structure is meant to be
implemented in different programming languages.

Fig. 2. Augmented framework in detail



4.1 Context filter

The context filter is responsible not only for processing various information do-
mains but also for extracting relevant information to be used by the agent and
the other modules. This component is needed in order to capture the contex-
tual information organized according to the information domains structure, thus
making it possible for the internal mechanism to process this information ac-
cordingly. From a design perspective, the Context Filter responsibilities can be
aggregated in two sub-modules, named Translator and Updater.

All contextual information is delivered by the Information Broker to the
Translator, which transforms it into a common internal structure that can be
used by the system. This process requires the use of information domain map-
pings, which contain individual grammar definitions that are used by an internal
parser. Each information domain is mapped to a specific grammar, describing its
structure and the information it possesses. Using a generic parser in association
with a parametrized grammar allows for the framework to process new infor-
mation structures without the need for implementing new code. In other words,
new information domains can be added to the framework by the parametrization
of new grammars. The result of the process done by the Translator sub-module
is the translated context.

Once the translated context is produced, the Updater sub-module persists it
in the database. Different internal structures can be used to store the translated
context; it is important, however, that it can be accessed and used by the frame-
work’s different modules if necessary. While rules and environment variables such
as location and temperature may be persisted immediately, identifying and per-
sisting experiences may require access to historical data. Location information,
for example, can be compared to older data to determine the time it took for an
agent to move from one place to another.

4.2 CPS

We used the original CPS-L structure as reference when designing this module.
CPS-L was originally presented as a planning process method to be used by an
agent to select feasible plans from its current set of intentions. These plans are
the result of a selection process based on analyzing the current context associated
with the agent, as well as its current set of intentions. This process also requires
a revision of any restrictions that might be associated with each of the actions
allowed to be performed by the same agent.

The CPS-L planning process also incorporates a guidance component that
can learn from past experiences. This component uses experiences from previ-
ously executed actions to predict the outcome of the analyzed plans, and there-
fore influencing the planning process.

In addition to the planning process, we also used the original concepts related
to plans. The original planning system describes the agent plans as a composition
of sub-plans called Intention plans. These sub-plans are separated according to



the agent’s intentions, in a manner that each of them is dedicated to the achieve-
ment of one specific intention. They can be decomposed into several Elementary
plans, which compose the set of all plans that can be executed by an agent. In
that sense, all agent plans can be ultimately decomposed into a subset of the set
of Elementary plans.

As stated before, our objective was not to propose a new context planning
system; instead, our intention is to use it as-is in order to demonstrate how
different context-related abilities can be incorporated into existing BDI archi-
tectures. We present the structure of the CPS module, comprised by the following
components: (i) Plan Factory, (ii) EPlans, and (iii) Guidance.

Plan Factory is the component that builds the plan to be executed by the
agent. This plan is a composition of Elementary plans, built in a manner that
different compositions can potentially lead to the same plan result. Additionally,
Elementary plans can be associated with contextual restrictions, allowing for
viability verification according to environment conditions. All Elementary plans
are stored in a library named EPlans, which resides in the embedded database.

Guidance is the component that uses the experiences contained in the database
to affect the whole plan generation process. That way, not only the feasibility
of a plan can be verified, but also an optimal plan can be chosen among other
multiple viable plans. All experiences are associated with an action and a set of
contextual variables.

4.3 Information broker

The Information Broker module concentrates two main responsibilities: (i) or-
chestrating the other auxiliary modules, deciding and triggering their use when
necessary; and (ii) delivering information (plans and events) to the agent.

Orchestrating the auxiliary modules is done through the use of a mapped
information flow - each module is activated when needed, if needed. Delivering
processed information to the agent requires knowing how it should receive this
information. This is done by using grammars and auxiliary parametrization,
making it possible to connect the framework to different agent architectures
with minimal effort.

5 Implementation

We implemented a proof-of-concept implementation for the framework using
Java. Our programming language choice was based on the availability of existing
libraries that could be used by the different modules. In order to maintain its
modular nature, each module of the framework was implemented separately. The
information flow was done through the use of common interfaces. A simplified
UML diagram of the implementation is shown in Figure 3. Other implementation
details related to each of the modules and its sub-modules are described below.



Fig. 3. Simplified UML diagram for the implementation

5.1 Context filter

Although the framework modularity allows for different functionalities to be im-
plemented as modules, the context filter must always be present. This module is
responsible for the most part of the data transformations involved in the frame-
work - including persisting data in the database. For this reason, we tried to keep
its implementation as parametrized as possible, allowing it to be reused in future
work. All sub-modules were also implemented with the same considerations in
mind.

Each information domain is represented in the system as a pair of metadata
(identification, original data structure) and associated grammar. Therefore, mul-
tiple information domains can be registered within the module through the use
of parametrization. In order to translate multiple parametrized grammars (rep-
resenting different information domains) into a common structure we embedded
a language parser generator into the Translator sub-module, called ANTLR1.
Since the responsibilities of the Updater sub-module include not only persisting
the translated context in the database but also identifying and persisting experi-
ences when required, we used the Active Record pattern 2 in its implementation.

5.2 CPS

We re-factored a previous proof-of-concept related to the original CPS-L when
implementing this module. Refactoring this code involved adapting it to use the
common information interfaces and the embedded database contained in the
framework. It is also important to mention that this code uses a Java-based
Prolog engine called tuProlog 3 in its planning process.

1 http://www.antlr.org
2 https://www.martinfowler.com/eaaCatalog/activeRecord.html
3 https://sourceforge.net/projects/tuprolog/



5.3 Embedded database

Centralizing the orchestration of different modules while allowing for them to
directly access the embedded database raises concerns on data integrity and
database concurrency. In order to minimize these problems and to simplify our
implementation, we use an embedded database library called MapDB1. This
library allows the persistence of Java native collections directly in the memory,
while mapping the database into a Java object that is managed by the JVM.
Persisted objects can then be accessed as follows:

File dbFile = Utils.embeddedDbFile();

DB db = DBMaker.fileDB(dbFile).closeOnJvmShutdown().make();

Locations storedLocations = db.get("locations");

5.4 Information broker

As mentioned before, we implemented common information interfaces to be used
by all modules. Therefore, every message passing through this module (before
reaching the agent) used the same structure. In order to deliver the processed
context (events and plans), we had to take into account the data structure used
by the agent. Also, to be able to test different agent architectures, we addressed
this problem through the use of a structure similar to the one used in the Trans-
lator sub-module.

6 Application

Having the proof-of-concept implemented, our next step was to test it against
an application scenario. We considered a situation involving moving an agent
from one place to another, while abiding to a predefined set of restrictions. Two
different information domains data structures were used to define the context.
The first information domain was used to provide information referencing the
location in GPS coordinates. Information about time and temperature was pro-
vided by the second information domain. Temperature and time were provided
in a comma-separated values format (CSV), while GPS coordinates were associ-
ated to identifiers. Each of the information domains were mapped to grammars
so the information could be translated by the internal parser. The information
on GPS coordinates is shown below, along with its associated grammar:

//GPS coordinates as received by the Information Broker:

LAT:-23.557164;LON:-46.730234

//Grammar used by the translator:

grammar CoordinatesID;

coordinates: id COLON latitude SEMICOLON id COLON longitude;

id: TEXT;

1 http://www.mapdb.org



latitude: COORDINATE;

longitude: COORDINATE;

COORDINATE: (’-’)? [0-9][0-9] ’.’ [0-9][0-9][0-9][0-9][0-9][0-9] ;

SEMICOLON: ’;’ ;

COLON: ’:’ ;

TEXT: [a-zA-Z]+ ;

All required parser classes are created by the ANTLR library, allowing the Trans-
lator to retrieve the relevant contextual information for each information domain:

//class CoordinatesIDParser parser generated by ANTLR

String sLatitude = parser.CoordinatesContext.latitude.getText();

Double latitude = Double.parseDouble(sLatitude);

In order to discretize GPS coordinates into known locations we used a reverse
geocoding process, which returns the nearest known location from a given set
of coordinates. We adapted an existing library 1 to make it inter-operable with
our embedded database. This process was implemented in the Updater sub-
module.Using reverse geocoding allowed us to discretize any set of coordinates
as follows:

//Double latitude, longitude;

String location = storedLocations.findNearest(latitude,longitude);

All functionalities necessary to compute experience involving the movement from
one location to another (duration, points of origin and destiny, restrictions in
place) were also implemented within the Updater sub-module. We used only
one learning module to process the experiences within the CPS module. The
learning algorithm was based on minimal movement duration over the five most
recent experiences. Two different agent architectures were used in conjunction
with the same framework implementation in order to test its re-usability (plans
and events output). Since our goal was to assure that the processed context and
plans were being propagated to the agents accordingly, benchmarking the agents
was not a part of this work.

The agent architectures used as adjacent structures to the framework were:
JASON2 and BDI4JADE3. While JASON uses an AgentSpeak-based syntax to
represent plans and beliefs, BDI4JADE is a pure Java implementation of a BDI
architecture. This allowed us to test how plans and beliefs could be delivered to
different agent architectures.

Our success criteria for this test was based on: (i) correct translation from
the information domains data; (ii) correct calculations for the experiences; (iii)
successful CPS processing; and (iv) successful delivery of processed context and
plans to the two different agent architectures. All of them were met, and the test
was concluded with success. A repository containing all the files used as inputs

1 https://github.com/AReallyGoodName/OfflineReverseGeocode
2 http://jason.sourceforge.net/
3 http://www.inf.ufrgs.br/prosoft/bdi4jade/



by the framework are available in a public repository1, as well as the generated
plans and beliefs for both agent architectures.

7 Discussion and related work

The present work aims at serving as an initial step towards solving the problem
of deploying different existing agents into multiple environments. The proposed
framework accomplishes that by (i) providing means to add extra functionality
to existing agents and (ii) implementing a generic contextual translating matrix
to be used in conjunction with different vocabularies used by agents.

In terms of implementation, it is worth mentioning that some aspects of the
framework may demand different levels of effort from the programmer. Using a
parametrized grammar mechanism to properly capture contextual information,
for example, is beneficial from the interoperability perspective since it allows
different information structures to be used by the framework. On the other hand,
modeling and implementing a grammar that properly describes the environment
or a specific information domain may not be a trivial task. For that reason,
specific technologies or tools may be more or less adequate to implement the
proposed framework. The study and comparison of such techniques, however,
was not part of the present work.

This framework is not presented as an agent-based modeling tool or another
agent architecture. Context processing is presented as a mandatory component
model in the framework, since it is required for all subsequent processes. At the
same time, we used the CPS module as an illustration of how existing function-
alities could be easily adapted and used by other BDI architectures. Enhancing
the CPS planning process or proposing an alternative to it were both out of the
scope of this work.

Adding extra functionalities to agents is usually done by extending its archi-
tecture, bounding the extension to a specific agent programming language [17,18]
- a monolithic approach in terms of implementation. While this solution tends
to be more efficient, it is not scalable in a scenario where multiple agent archi-
tectures must be modified in order to receive a new functionality or capability.

Besides being an extra functionality by its own, context processing is also
dealt with in different ways. Dealing with various contexts requires multiple
context models, which must be implemented somewhere between the environ-
ment per se and the deployed agent. Different models may be implemented in
different manners, which may lead to interoperability issues when the system
is required to process multiple models at the same time. Using information do-
mains is a way to preemptively solve this problem, while maintaining the context
modeling process parameterizable enough to facilitate new implementations.

Integrating existing agents with other heterogeneous systems is also a matter
solved by the use of a parameterizable translation mechanism. While there are
obvious drawbacks in terms of required computational power, new communica-
tion modules can be implemented and make use of the translation matrix in

1 http://gitlab.com/casals/AAF/



place. Using a parser tree generator allows for new domain-specific languages to
be implemented through the use of structured grammars, minimizing develop-
ment efforts.

Providing a framework to support context-aware applications is not a novel
idea. Most implementations, however, are bound to specific deployment environ-
ments or vocabularies [19–22]. Frameworks such as JCAF [21] and CoBrA [22]
are deployed as middleware or publisher/subscriber services, requiring additional
infrastructure resources and the use of a centralized communication structure.
Being limited to a vocabulary also means that the context is translated into a
fixed structure. Using this structure with an existing agent would require another
translation process to be implemented. In the case of Intel’s Context-Sensing
SDK1, the abstraction layer between the application and the information cap-
turing is also limited, restricted to the sensors available and their information
data structures.

Our proposal intends to overcome these concerns. Using a framework at-
tached to the agent instead of relying on a central coordination point simplifies
its deployment, and re-configuring the communication flow is no longer nec-
essary. Its modularity also allows the deployment of augmented agents with
different capabilities to the same environment. Dividing the context into sep-
arated information domains and parameterizing their structures also simplifies
the adaptation process that occurs when an environment is subject to changes
such as the addition or removal of information sources.

On another perspective, CArtAgO2 provides a workspace for abstracting the
environment that addresses the heterogeneity problem. This concept, however,
is structurally different from the model proposed. Our work is in its initial stage,
but this difference will become more clear in the future.

It is also important to mention that our application scenario was based on a
real-world problem, involving a situation where different logistic constraints are
imposed either by a set of rules (opening/closing hours) or restrictions related
to different people (agents). While no benchmarking or comparisons were done
at this time, it is our intention to use this work as a basis to further experiment
on scenarios related to real-world problems, thus providing possible solutions for
existing problems.

8 Conclusion and future work

In this paper we presented a framework to add context-aware functionalities
when combined with multiple existing BDI architectures. The contribution of
this work resides in (i) proposing a context awareness extensibility model to be
used in conjunction with multiple BDI architectures and (ii) proposing a context
processing mechanism to be used with different context representations.

From a software engineering perspective, the first contribution promotes scal-
ability and re-usability. Parametrization and modularization are used to mini-

1 https://software.intel.com/en-us/context-sensing-sdk
2 http://cartago.sourceforge.net/



mize the implementation effort involved in extending an existing BDI architec-
ture. Functionalities already implemented can be re-used as modules attached to
different agents, and the parameterization mechanism simplifies the deployment
of an augmented agent to different environments. Using an embedded database
also provides means to the implementation of more robust functionalities.

The second contribution allows for the simplified capturing and processing
of contextual information originated from different sources. We also presented
an implementation and subsequent experimentation of the proposed framework
in order to properly evaluate its feasibility.

Both the extensibility and the context processing mechanisms were success-
fully tested within the defined parameters. As we mentioned before, the proof-
of-concept implementation presents drawbacks related to the use of available
computational resources. The study of these limitations, however, was not part
of the scope of this work. Future research will include new functionality modules
and the evolution of the framework towards a solution for multi-BDI environ-
ments in AmI scenarios, as well as experiments involving the use of different BDI
agent architectures and studying the identified limitations.
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