Skip to main content

Augmented Agents: Contextual Perception and Planning for BDI Architectures

  • Conference paper
  • First Online:
Engineering Multi-Agent Systems (EMAS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10738))

Included in the following conference series:

  • 538 Accesses

Abstract

Context-aware systems are capable of perceiving the physical environment where they are deployed and adapt their behavior, depending on the available information and how it is processed. Ambient Intelligence (AmI) represents context-aware environments that react and respond to the requirements of people. While different models can be used to implement adaptive context-aware systems, BDI multiagent systems are especially suitable for that, due to their belief-based reasoning. Different BDI architectures, however, use different reasoning processes, therefore providing different adaptability levels. In each architecture, contextual information is adherent to a specific belief structure, and the context-related capabilities may vary. We propose a framework that can be used by BDI agents in a multi-architecture scenario in order to modularly acquire context-aware capabilities, such as learning, additional reasoning abilities, and interoperability. When this framework is combined with an existing BDI agent, the result is an augmented agent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.fipa.org/specs/fipa00001/.

  2. 2.

    http://www.antlr.org.

  3. 3.

    https://www.martinfowler.com/eaaCatalog/activeRecord.html.

  4. 4.

    https://sourceforge.net/projects/tuprolog/.

  5. 5.

    http://www.mapdb.org.

  6. 6.

    https://github.com/AReallyGoodName/OfflineReverseGeocode.

  7. 7.

    http://jason.sourceforge.net/.

  8. 8.

    http://www.inf.ufrgs.br/prosoft/bdi4jade/.

  9. 9.

    http://gitlab.com/casals/AAF/.

  10. 10.

    https://software.intel.com/en-us/context-sensing-sdk.

  11. 11.

    http://cartago.sourceforge.net/.

References

  1. De Ruyter, B., Aarts, E.: Ambient intelligence: visualizing the future. In: Proceedings of the working conference on Advanced visual interfaces, ACM, pp. 203–208 (2004)

    Google Scholar 

  2. Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, J., Burgelman, J.C.: Scenarios for ambient intelligence in 2010. Office for Official Publications of the European Communities (2001)

    Google Scholar 

  3. Hong, J., Suh, E., Kim, S.J.: Context-aware systems: a literature review and classification. Expert Syst. Appl. 36(4), 8509–8522 (2009)

    Article  Google Scholar 

  4. Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P.: Towards a better understanding of context and context-awareness. In: Gellersen, H.-W. (ed.) HUC 1999. LNCS, vol. 1707, pp. 304–307. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48157-5_29

    Chapter  Google Scholar 

  5. Kim, J., Chung, K.Y.: Ontology-based healthcare context information model to implement ubiquitous environment. Multimedia Tools Appl. 71(2), 873–888 (2014)

    Article  Google Scholar 

  6. Nalepa, G.J., Bobek, S.: Rule-based solution for context-aware reasoning on mobile devices. Comput. Sci. Inf. Syst. 11(1), 171–193 (2014)

    Article  Google Scholar 

  7. Kwon, O.B., Sadeh, N.: Applying case-based reasoning and multi-agent intelligent system to context-aware comparative shopping. Decis. Support Syst. 37(2), 199–213 (2004)

    Article  Google Scholar 

  8. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In: Allen, J., Fikes, R., Sandewall, E., (eds.): Proceedings of the 2nd International Conference on Principles of Knowledge Representation and Reasoning, Morgan Kaufmann publishers Inc.: San Mateo, pp. 473–484 (1991)

    Google Scholar 

  9. Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. Artif. Intell. 42(2–3), 213–261 (1990)

    Article  MathSciNet  Google Scholar 

  10. Chaouche, A.-C., El Fallah Seghrouchni, A., Ilié, J.-M., Saïdouni, D.E.: Improving the contextual selection of BDI plans by incorporating situated experiments. In: Chbeir, R., Manolopoulos, Y., Maglogiannis, I., Alhajj, R. (eds.) AIAI 2015. IAICT, vol. 458, pp. 266–281. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23868-5_19

    Chapter  Google Scholar 

  11. Hjørland, B.: Domain analysis in information science: eleven approaches-traditional as well as innovative. J. Doc. 58(4), 422–462 (2002)

    Article  Google Scholar 

  12. Hennessy, P.: Information domains in CSCW. Studies in Computer Supported Cooperative Work: Theory, Practice and Design. In: Bowers, J.M., Benford, S.D. (eds.), Elsevier, North Holland (1991)

    Google Scholar 

  13. Mena, E., Kashyap, V., Illarramendi, A., Sheth, A.: Domain specific ontologies for semantic information brokering on the global information infrastructure. In: Formal Ontology in Information Systems, vol. 46, pp. 269–283. IOS Press, MCB UP Ltd., Amsterdam (1998)

    Google Scholar 

  14. Chaouche, A.-C., El Fallah Seghrouchni, A., Ilié, J.-M., Saïdouni, D.E.: From intentions to plans: a contextual planning guidance. In: Camacho, D., Braubach, L., Venticinque, S., Badica, C. (eds.) Intelligent Distributed Computing VIII. SCI, vol. 570, pp. 403–413. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-10422-5_42

    Chapter  Google Scholar 

  15. Wooldridge, M.J.: Reasoning about rational agents. MIT Press, Massachusetts (2000)

    MATH  Google Scholar 

  16. Balke, T., Gilbert, N.: How do agents make decisions? a survey. J. Artif. Soc. Soc. Simul. 17(4), 13 (2014)

    Article  Google Scholar 

  17. Buford, J., Jakobson, G., Lewis, L.: Extending BDI multi-agent systems with situation management. In: 9th International Conference on Information Fusion, IEEE, pp. 1–7 (2006)

    Google Scholar 

  18. Singh, D., Sardina, S., Padgham, L.: Extending BDI plan selection to incorporate learning from experience. Robot. Auton. Syst. 58(9), 1067–1075 (2010)

    Article  Google Scholar 

  19. Dey, A.K.: Supporting the construction of context-aware applications. In: Dagstuhl Seminar on Ubiquitous Computing (2001)

    Google Scholar 

  20. Gu, T., Pung, H.K., Zhang, D.Q.: A service-oriented middleware for building context-aware services. J. Netw. Comput. Appl. 28(1), 1–18 (2005)

    Article  Google Scholar 

  21. Bardram, J.E.: The java context awareness framework (JCAF) – a service infrastructure and programming framework for context-aware applications. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) Pervasive 2005. LNCS, vol. 3468, pp. 98–115. Springer, Heidelberg (2005). https://doi.org/10.1007/11428572_7

    Chapter  Google Scholar 

  22. Chen, H., Finin, T., Joshi, A.: A context broker for building smart meeting rooms. In: Proceedings of the Knowledge Representation and Ontology for Autonomous Systems Symposium, AAAI Spring Symposium, pp. 53–60 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arthur Casals , Amal El Fallah-Seghrouchni or Anarosa A. F. Brandão .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Casals, A., El Fallah-Seghrouchni, A., Brandão, A.A.F. (2018). Augmented Agents: Contextual Perception and Planning for BDI Architectures. In: El Fallah-Seghrouchni, A., Ricci, A., Son, T. (eds) Engineering Multi-Agent Systems. EMAS 2017. Lecture Notes in Computer Science(), vol 10738. Springer, Cham. https://doi.org/10.1007/978-3-319-91899-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91899-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91898-3

  • Online ISBN: 978-3-319-91899-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics