Abstract
Natural language generation (NLG) plays a critical role in various natural language processing (NLP) applications. And the topics provide a powerful tool to understand the natural language. We propose a novel topic-based NLG model which can generate topic coherent sentences given single topic or combination of topics. The model is an extension of the recurrent encoder-decoder framework by introducing a global topic embedding matrix. Experimental results show that our encoder can not only transform a source sentence to a representative topic distribution which can give a better interpretation of the source sentence, but also generate topic coherent and diversified sentences given different topic distribution without any text-level input.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Pre-trained word vectors of Glove can be obtained from http://nlp.stanford.edu/projects/glove/.
- 3.
References
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)
Bowman, S.R., Vilnis, L., Vinyals, O., Dai, A.M., Józefowicz, R., Bengio, S.: Generating sentences from a continuous space. In: Proceedings of CoNLL, pp. 10–21 (2016)
Cao, Z., Li, S., Liu, Y., Li, W., Ji, H.: A novel neural topic model and its supervised extension. In: Proceedings of AAAI, pp. 2210–2216 (2015)
Cho, K., van Merrienboer, B., Gülçehre, Ç., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Proceedings of EMNLP, pp. 1724–1734 (2014)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR abs/1412.6980 (2014)
Kiros, R., Zhu, Y., Salakhutdinov, R., Zemel, R.S., Urtasun, R., Torralba, A., Fidler, S.: Skip-thought vectors. In: Proceeding of NIPS, pp. 3294–3302 (2015)
Lai, S., Xu, L., Liu, K., Zhao, J.: Recurrent convolutional neural networks for text classification. In: Proceedings of AAAI, pp. 2267–2273 (2015)
Li, J., Luong, M., Jurafsky, D.: A hierarchical neural autoencoder for paragraphs and documents. In: Proceedings of ACL, pp. 1106–1115 (2015)
Liu, Y., Liu, Z., Chua, T., Sun, M.: Topical word embeddings. In: Proceedings of AAAI, pp. 2418–2424 (2015)
Mikolov, T., Zweig, G.: Context dependent recurrent neural network language model. In: Proceedings of SLT, pp. 234–239 (2012)
Neubig, G.: Neural machine translation and sequence-to-sequence models: A tutorial. CoRR abs/1703.01619 (2017)
Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Proceedings of EMNLP, pp. 1532–1543 (2014)
Pontiki, M., Galanis, D., Pavlopoulos, J., Papageorgiou, H., Androutsopoulos, I., Manandhar, S.: Semeval-2014 task 4: aspect based sentiment analysis. In: Proceedings of SemEval@COLING, pp. 27–35 (2014)
Serban, I.V., Sordoni, A., Lowe, R., Charlin, L., Pineau, J., Courville, A.C., Bengio, Y.: A hierarchical latent variable encoder-decoder model for generating dialogues. In: Proceedings of AAAI, pp. 3295–3301 (2017)
Shang, L., Lu, Z., Li, H.: Neural responding machine for short-text conversation. In: Proceedings of ACL, pp. 1577–1586 (2015)
Sordoni, A., Galley, M., Auli, M., Brockett, C., Ji, Y., Mitchell, M., Nie, J., Gao, J., Dolan, B.: A neural network approach to context-sensitive generation of conversational responses. In: Proceedings of NAACL-HLT, pp. 196–205 (2015)
Tran, V., Nguyen, L., Tojo, S.: Neural-based natural language generation in dialogue using RNN encoder-decoder with semantic aggregation. In: Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue, Saarbrücken, Germany, 15–17 August 2017. pp. 231–240 (2017)
Wen, T., Gasic, M., Kim, D., Mrksic, N., Su, P., Vandyke, D., Young, S.J.: Stochastic language generation in dialogue using recurrent neural networks with convolutional sentence reranking. In: Proceedings of SIGDIAL, pp. 275–284 (2015)
Wen, T., Gasic, M., Mrksic, N., Rojas-Barahona, L.M., Su, P., Vandyke, D., Young, S.J.: Multi-domain neural network language generation for spoken dialogue systems. In: Proceedings of NAACL-HLT, pp. 120–129 (2016)
Wen, T., Gasic, M., Mrksic, N., Su, P., Vandyke, D., Young, S.J.: Semantically conditioned LSTM-based natural language generation for spoken dialogue systems. In: Proceedings of EMNLP, pp. 1711–1721 (2015)
Xing, C., Wu, W., Wu, Y., Liu, J., Huang, Y., Zhou, M., Ma, W.: Topic aware neural response generation. In: Proceedings of AAAI, pp. 3351–3357 (2017)
Xu, J., Xu, B., Wang, P., Zheng, S., Tian, G., Zhao, J., Xu, B.: Self-taught convolutional neural networks for short text clustering. CoRR abs/1701.00185 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Ou, W., Chen, C., Ren, J. (2018). T2S: An Encoder-Decoder Model for Topic-Based Natural Language Generation. In: Silberztein, M., Atigui, F., Kornyshova, E., Métais, E., Meziane, F. (eds) Natural Language Processing and Information Systems. NLDB 2018. Lecture Notes in Computer Science(), vol 10859. Springer, Cham. https://doi.org/10.1007/978-3-319-91947-8_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-91947-8_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-91946-1
Online ISBN: 978-3-319-91947-8
eBook Packages: Computer ScienceComputer Science (R0)