Skip to main content

An Efficient Framework for the Analysis of Big Brain Signals Data

  • Conference paper
  • First Online:
Databases Theory and Applications (ADC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10837))

Included in the following conference series:

  • 1216 Accesses

Abstract

Big Brain Signals Data (BBSD) analysis is one of the most difficult challenges in the biomedical signal processing field for modern treatment and health monitoring applications. BBSD analytics has been recently applied towards aiding the process of care delivery and disease exploration. The main purpose of this paper is to introduce a framework for the analysis of BBSD of time series EEG in biomedical signal processing for identification of abnormalities. This paper presents a data analysis framework combining complex network and machine learning techniques for the analysis of BBSD in time series form. The proposed method is tested on an electroencephalogram (EEG) time series database as the implanted electrodes in the brain generate huge amounts of time series data in EEG. The pilot study in this paper has examined that the proposed methodology has the capability to analysis massive size of brain signals data and also can be used for handling any other biomedical signal data in time series form (e.g. electrocardiogram (ECG); Electromyogram (EMG)). The main benefit of the proposed methodology is to provide an effective way for analyzing the vast amount of BBSD generated from the brain to care patients with better outcomes and also help technicians for making intelligent decisions system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Siuly, S., Li, Y., Zhang, Y.: EEG Signal Analysis and Classification: Techniques and Applications. Health Information Science. Springer Nature, Heidelberg (2016). https://doi.org/10.1007/978-3-319-47653-7. (ISBN 978-3-319-47653-7)

    Book  Google Scholar 

  2. Siuly, S., Zhang, Y.: Medical big data: neurological diseases diagnosis through medical data analysis. Data Sci. Eng. 1(2), 54–64 (2016)

    Article  Google Scholar 

  3. Derlatka, M., Pauk, J.: Data Mining in Analysis of Biomechanical Signals. Solid State Phenom. 147–149, 588–593 (2009)

    Article  Google Scholar 

  4. Belle, A., Thiagarajan, R., Soroushmehr, S.M.R., Navidi, F., Beard, D.A., Najarian, K.: Big data analytics in healthcare. Biomed. Res. Int. 2015, 16 (2015). Article ID 370194

    Article  Google Scholar 

  5. Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westover, B., Zhu, Q., et al.: Addressing big data time series. ACM Trans. Knowl. Discov. Data 7(3), 1–31 (2013)

    Article  Google Scholar 

  6. Herland, M., Khoshgoftaar, T., Wald, R.: A review of data mining using big data in health informatics. J. Big Data 1(1), 2 (2014)

    Article  Google Scholar 

  7. Andrzejak, R., Lehnertz, K., Mormann, F., Rieke, C., David, P., Elger, C.: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys. Rev. E 64(6), 061907 (2001)

    Article  Google Scholar 

  8. Bache, K., Lichman, M.: UCI machine learning repository. University of California, Irvine, School of Information and Computer (2013). http://archive.ics.uci.edu/ml

  9. Zhang, X., Begleiter, H., Porjesz, B., Wang, W., Litke, A.: Event related potentials during object recognition tasks. Brain Res. Bull. 38(6), 531–538 (1995)

    Article  Google Scholar 

  10. Luque, B., Lacasa, L., Ballesteros, F., Luque, J.: Horizontal visibility graphs: exact results for random time series. Phys. Rev. E 80(4), 046103 (2009)

    Article  Google Scholar 

  11. Supriya, S., Siuly, S., Wang, H., Zhuo, G., Zhang, Y.: Analyzing EEG signal data for detection of epileptic seizure: introducing weight on visibility graph with complex network feature. In: Cheema, M., Zhang, W., Chang, L. (eds.) Databases Theory and Applications. LNCS, vol. 9877, pp. 56–66. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46922-5_5

    Chapter  Google Scholar 

  12. Supriya, S., Siuly, S., Zhang, Y.: Automatic epilepsy detection from EEG introducing a new edge weight method in the complex network. Electron. Lett. 52(17), 1430–1432 (2016)

    Article  Google Scholar 

  13. Antoniou, I., Tsompa, E.: Statistical: analysis of weighted networks. Discrete Dyn. Nat. Soc. 2008, 1–16 (2008)

    Article  MathSciNet  Google Scholar 

  14. Zhang, B., Zhang, Y., Begg, R.: Gait classification in children with cerebral palsy by Bayesian approach. Pattern Recogn. 42(4), 581–586 (2009)

    Article  Google Scholar 

  15. Cao, J., Wu, Z., Mao, B., Zhang, Y.: Shilling attack detection utilizing semi-supervised learning method for collaborative recommender system. World Wide Web 16(5–6), 729–748 (2012)

    Google Scholar 

  16. Siuly, Wang, H., Zhang, Y.: Detection of motor imagery EEG signals employing Naïve Bayes based learning process. Measurement 86, 148–158 (2016)

    Article  Google Scholar 

  17. Kotsiantis, S.B., Zaharakis, I., Pintelas, P.: Supervised machine learning: a review of classification techniques. Emerg. Artif. Intell. Appl. Comput. Eng. 160, 3–24 (2007)

    Google Scholar 

  18. Supriya, S., Siuly, S., Wang, H., Cao, J., Zhang, Y.: Weighted visibility graph with complex network features in the detection of epilepsy. IEEE Access 4, 6554–6566 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supriya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Supriya, Siuly, Wang, H., Zhang, Y. (2018). An Efficient Framework for the Analysis of Big Brain Signals Data. In: Wang, J., Cong, G., Chen, J., Qi, J. (eds) Databases Theory and Applications. ADC 2018. Lecture Notes in Computer Science(), vol 10837. Springer, Cham. https://doi.org/10.1007/978-3-319-92013-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92013-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92012-2

  • Online ISBN: 978-3-319-92013-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics