Skip to main content

Bayesian Learning of Finite Asymmetric Gaussian Mixtures

  • Conference paper
  • First Online:
Recent Trends and Future Technology in Applied Intelligence (IEA/AIE 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10868))

Abstract

Asymmetric Gaussian mixture (AGM) model has been proven to be more flexible than the classic Gaussian mixture model from many aspects. In contrast with previous efforts that have focused on maximum likelihood estimation, this paper introduces a fully Bayesian learning approach using Metropolis-Hastings (MH) within Gibbs sampling method to learn AGM model. We show the merits of the proposed model using synthetic data and a challenging intrusion detection application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bouguila, N., Ziou, D.: MML-based approach for finite dirichlet mixture estimation and selection. In: Perner, P., Imiya, A. (eds.) MLDM 2005. LNCS (LNAI), vol. 3587, pp. 42–51. Springer, Heidelberg (2005). https://doi.org/10.1007/11510888_5

    Chapter  Google Scholar 

  2. Bouguila, N., Ziou, D., Hammoud, R.I.: A Bayesian non-Gaussian mixture analysis: application to eye modeling. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2007), 18–23 June 2007, Minneapolis, Minnesota, USA (2007)

    Google Scholar 

  3. Sefidpour, A., Bouguila, N.: Spatial color image segmentation based on finite non-Gaussian mixture models. Expert Syst. Appl. 39(10), 8993–9001 (2012)

    Article  Google Scholar 

  4. Bouguila, N., Amayri, O.: A discrete mixture-based kernel for SVMs: application to spam and image categorization. Inf. Process. Manag. 45(6), 631–642 (2009)

    Article  Google Scholar 

  5. McLachlan, G.J., Peel, D.: Finite Mixture Models. Wiley, Hoboken (2000)

    Book  Google Scholar 

  6. Bouguila, N., Ziou, D., Monga, E.: Practical Bayesian estimation of a finite beta mixture through Gibbs sampling and its applications. Stat. Comput. 16(2), 215–225 (2006)

    Article  MathSciNet  Google Scholar 

  7. Elguebaly, T., Bouguila, N.: Bayesian learning of generalized Gaussian mixture models on biomedical images. In: Schwenker, F., El Gayar, N. (eds.) ANNPR 2010. LNCS (LNAI), vol. 5998, pp. 207–218. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12159-3_19

    Chapter  Google Scholar 

  8. Elguebaly, T., Bouguila, N.: Background subtraction using finite mixtures of asymmetric Gaussian distributions and shadow detection. Mach. Vis. Appl. 25(5), 1145–1162 (2014)

    Article  Google Scholar 

  9. Bouguila, N., Almakadmeh, K., Boutemedjet, S.: A finite mixture model for simultaneous high-dimensional clustering, localized feature selection and outlier rejection. Expert Syst. Appl. 39(7), 6641–6656 (2012)

    Article  Google Scholar 

  10. Boutemedjet, S., Ziou, D., Bouguila, N.: Model-based subspace clustering of non-Gaussian data. Neurocomputing 73(10–12), 1730–1739 (2010)

    Article  Google Scholar 

  11. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodol.) 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  12. Bouguila, N., Ziou, D.: On fitting finite Dirichlet mixture using ECM and MML. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds.) ICAPR 2005. LNCS, vol. 3686, pp. 172–182. Springer, Heidelberg (2005). https://doi.org/10.1007/11551188_19

    Chapter  MATH  Google Scholar 

  13. Bouguila, N., Ziou, D., Hammoud, R.I.: On Bayesian analysis of a finite generalized Dirichlet mixture via a metropolis-within-Gibbs sampling. Pattern Anal. Appl. 12(2), 151–166 (2009)

    Article  MathSciNet  Google Scholar 

  14. Bouguila, N., Elguebaly, T.: A fully Bayesian model based on reversible jump MCMC and finite beta mixtures for clustering. Expert Syst. Appl. 39(5), 5946–5959 (2012)

    Article  Google Scholar 

  15. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1), 97–109 (1970)

    Article  MathSciNet  Google Scholar 

  16. Bouguila, N.: Bayesian hybrid generative discriminative learning based on finite Liouville mixture models. Pattern Recogn. 44(6), 1183–1200 (2011)

    Article  Google Scholar 

  17. Bourouis, S., Mashrgy, M.A., Bouguila, N.: Bayesian learning of finite generalized inverted Dirichlet mixtures: application to object classification and forgery detection. Expert Syst. Appl. 41(5), 2329–2336 (2014)

    Article  Google Scholar 

  18. Elguebaly, T., Bouguila, N.: Bayesian learning of finite generalized Gaussian mixture models on images. Sig. Process. 91(4), 801–820 (2011)

    Article  Google Scholar 

  19. Bouguila, N., Ziou, D.: A powreful finite mixture model based on the generalized Dirichlet distribution: unsupervised learning and applications. In: 17th International Conference on Pattern Recognition, ICPR 2004, Cambridge, UK, 23–26 August 2004, pp. 280–283. IEEE Computer Society (2004)

    Google Scholar 

  20. Bouguila, N., Ziou, D.: Dirichlet-based probability model applied to human skin detection [image skin detection]. In: 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2004, 17–21 May 2004, Montreal, Quebec, Canada, pp. 521–524. IEEE (2004)

    Google Scholar 

  21. Luengo, D., Martino, L.: Fully adaptive Gaussian mixture metropolis-hastings algorithm. In: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2013, 26–31 May 2013, Vancouver, BC, Canada, pp. 6148–6152. IEEE (2013)

    Google Scholar 

  22. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the KDD CUP 99 data set. In: IEEE Symposium on Computational Intelligence for Security and Defense Applications, CISDA 2009, 8–10 July 2009, Ottawa, Canada, pp. 1–6. IEEE (2009)

    Google Scholar 

  23. Stephens, M.: Bayesian analysis of mixture models with an unknown number of components - an alternative to reversible jump methods. Ann. Stat. 40–74 (2000)

    Google Scholar 

  24. Puttini, R.S., Marrakchi, Z., Mé, L.: A Bayesian classification model for real-time intrusion detection. In: AIP Conference Proceedings, vol. 659, pp. 150–162 (2003)

    Google Scholar 

  25. Zhong, S., Khoshgoftaar, T.M., Seliya, N.: Clustering-based network intrusion detection. Int. J. Reliab. Qual. Saf. Eng. 14(02), 169–187 (2007)

    Article  Google Scholar 

  26. Fan, W., Bouguila, N., Ziou, D.: Unsupervised anomaly intrusion detection via localized Bayesian feature selection. In: Cook, D.J., Pei, J., Wang, W., Zaïane, O.R., Wu, X. eds.: 11th IEEE International Conference on Data Mining, ICDM 2011, 11–14 December, Vancouver, BC, Canada, pp. 1032–1037. IEEE Computer Society (2011)

    Google Scholar 

  27. Hartigan, J.A., Wong, M.A.: Algorithm as 136: a k-means clustering algorithm. J. Roy. Stat. Soc. Ser. C (Appl. Stat.) 28(1), 100–108 (1979)

    MATH  Google Scholar 

  28. Bouguila, N.: Spatial color image databases summarization. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2007, 15–20 April 2007, Honolulu, Hawaii, USA, pp. 953–956. IEEE (2007)

    Google Scholar 

  29. Bouguila, N., Ziou, D.: Improving content based image retrieval systems using finite multinomial Dirichlet mixture. In: Proceedings of the 2004 14th IEEE Signal Processing Society Workshop Machine Learning for Signal Processing, pp. 23–32. IEEE (2004)

    Google Scholar 

  30. Boutemedjet, S., Ziou, D., Bouguila, N.: Unsupervised feature selection for accurate recommendation of high-dimensional image data. In: Platt, J.C., Koller, D., Singer, Y., Roweis, S.T. (eds.) Advances in Neural Information Processing Systems 20, Proceedings of the Twenty-First Annual Conference on Neural Information Processing Systems, 3–6 December 2007, Vancouver, British Columbia, Canada, pp. 177–184. Curran Associates, Inc. (2007)

    Google Scholar 

Download references

Acknowledgment

The completion of this research work was made possible thanks to Concordia University via a Concordia University Research Chair Tier II.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuai Fu or Nizar Bouguila .

Editor information

Editors and Affiliations

Appendix A

Appendix A

A.1 Derivation of Acceptance Ratio r by Eq. (12)

The derivation of acceptance ratio r is based on the assumption that mixture parameters are independent from each other which means that:

$$\begin{aligned} \begin{aligned} \pi (\varTheta )&= \pi (p,\xi ) = \pi (\xi ) \\&= \prod _{j=1}^M\pi (\mu _j)\pi (\sigma _{lj})\pi (\sigma _{rj}) \qquad \qquad \qquad \qquad \qquad \\&= \prod _{j=1}^M\mathcal {N}_d(\mu _j|\eta ,\varSigma )\mathcal {N}_d(\sigma _{lj}|\tau ,\varSigma )\mathcal {N}_d(\sigma _{rj}|\tau ,\varSigma )\qquad \qquad \qquad \end{aligned} \end{aligned}$$
(14)

in Eq. (14), since the mixture weigh p is generated following Gibbs sampling method whose acceptance ratio is always 1, it should be excluded from Metropolis-Hastings estimation step. Accordingly, apply the same rule to the proposal distribution as well:

$$\begin{aligned} \begin{aligned}&q(\varTheta ^{(t)}|\varTheta ^{(t-1)}) = q(\xi ^{(t)}|\xi ^{(t-1)}) \\&\quad = \prod _{j=1}^M\mathcal {N}_d(\mu _j^{(t)}|\mu _j^{(t-1)},\varSigma )\mathcal {N}_d(\sigma _{lj}^{(t)}|\sigma _{lj}^{(t-1)},\varSigma )\mathcal {N}_d(\sigma _{rj}^{(t)}|\sigma _{rj}^{(t-1)},\varSigma ) \end{aligned} \end{aligned}$$
(15)

by combining Eqs. (2), (4), (9), (10), (11), (14) and (15), Eq. (12) can be written as follows:

$$\begin{aligned} \begin{aligned}&r = \frac{p(\mathcal {X}|\varTheta ^{(t)})\pi (\varTheta ^{(t)})q(\varTheta ^{(t-1)}|\varTheta ^{(t)})}{p(\mathcal {X}|\varTheta ^{(t-1)})\pi (\varTheta ^{(t-1)})q(\varTheta ^{(t)}|\varTheta ^{(t-1)})} \\&\qquad = \prod _{i=i}^N \prod _{j=1}^M(\frac{p(X_i|\mu _j^{(t)},\sigma _{lj}^{(t)},\sigma _{rj}^{(t)})}{p(X_i|\mu _j^{(t-1)},\sigma _{lj}^{(t-1)},\sigma _{rj}^{(t-1)})} \qquad \qquad \\&\quad \times \frac{\mathcal {N}_d(\mu _j^{(t)}|\eta ,\varSigma )\mathcal {N}_d(\sigma _{lj}^{(t)}|\tau ,\varSigma )\mathcal {N}_d(\sigma _{rj}^{(t)}|\tau ,\varSigma )}{\mathcal {N}_d(\mu _j^{(t-1)}|\eta ,\varSigma )\mathcal {N}_d(\sigma _{lj}^{(t-1)}|\tau ,\varSigma )\mathcal {N}_d(\sigma _{rj}^{(t-1)}|\tau ,\varSigma )} \\&\quad \,\, \times \frac{\mathcal {N}_d(\mu _j^{(t-1)}|\mu _j^{(t)},\varSigma )\mathcal {N}_d(\sigma _{lj}^{(t-1)}|\sigma _{lj}^{(t)},\varSigma )\mathcal {N}_d(\sigma _{rj}^{(t-1)}|\sigma _{rj}^{(t)},\varSigma )}{\mathcal {N}_d(\mu _j^{(t)}|\mu _j^{(t-1)},\varSigma )\mathcal {N}_d(\sigma _{lj}^{(t)}|\sigma _{lj}^{(t-1)},\varSigma )\mathcal {N}_d(\sigma _{rj}^{(t)}|\sigma _{rj}^{(t-1)},\varSigma )} \end{aligned} \end{aligned}$$
(16)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fu, S., Bouguila, N. (2018). Bayesian Learning of Finite Asymmetric Gaussian Mixtures. In: Mouhoub, M., Sadaoui, S., Ait Mohamed, O., Ali, M. (eds) Recent Trends and Future Technology in Applied Intelligence. IEA/AIE 2018. Lecture Notes in Computer Science(), vol 10868. Springer, Cham. https://doi.org/10.1007/978-3-319-92058-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92058-0_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92057-3

  • Online ISBN: 978-3-319-92058-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics