Skip to main content

A Spatio-Semantic Model for Agricultural Environments and Machines

  • Conference paper
  • First Online:
Recent Trends and Future Technology in Applied Intelligence (IEA/AIE 2018)

Abstract

Digitization of agricultural processes is advancing fast as telemetry data from the involved machines becomes more and more available. Current approaches commonly have a machine-centric view that does not account for machine-machine or machine-environment relations. In this paper we demonstrate how to model such relations in the generic semantic mapping framework SEMAP. We describe how SEMAP’s core ontology is extended to represent knowledge about the involved machines and facilities in a typical agricultural domain. In the framework we combine different information layers – semantically annotated spatial data, semantic background knowledge and incoming sensor data – to derive qualitative spatial facts about the involved actors and objects within a harvesting campaign, which add to an increased process understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deeken, H., Wiemann, T., Lingemann, K., Hertzberg, J.: SEMAP-a semantic environment mapping framework. In: 2015 European Conference on Mobile Robots (ECMR), pp. 1–6. IEEE (2015)

    Google Scholar 

  2. Steinberger, G., Rothmund, M., Auernhammer, H.: Mobile farm equipment as a data source in an agricultural service architecture. Comput. Electron. Agric. 65(2), 238–246 (2009)

    Article  Google Scholar 

  3. Pfeiffer, D., Blank, S.: Real-time operator performance analysis in agricultural equipment. In: 73rd International Conference on Agricultural Engineering (AgEng), pp. 6–7 (2015)

    Google Scholar 

  4. Steckel, T., Bernardi, A., Gu, Y., Windmann, S., Maier, A., Niggemann, O.: Anomaly detection and performance evaluation of mobile agricultural machines by analysis of big data. In: 73rd International Conference on Agricultural Engineering (AgEng), pp. 6–7 (2015)

    Google Scholar 

  5. Dury, J., Garcia, F., Reynaud, A., Bergez, J.E.: Cropping-plan decision-making on irrigated crop farms: a spatio-temporal analysis. Eur. J. Agron. 50, 1–10 (2013)

    Article  Google Scholar 

  6. Lauer, J., Richter, L., Ellersiek, T., Zipf, A.: TeleAgro+: analysis framework for agricultural telematics data. In: 7th ACM SIGSPATIAL International Workshop on Computational Transportation Science, IWCTS 2014, pp. 47–53. ACM (2014)

    Google Scholar 

  7. Sørensen, C.G., Nielsen, V.: Operational analyses and model comparison of machinery systems for reduced tillage. Biosyst. Eng. 92(2), 143–155 (2005)

    Article  Google Scholar 

  8. Amiama, C., Pereira, J.M., Castro, A., Bueno, J.: Modelling corn silage harvest logistics for a cost optimization approach. Comput. Electron. Agric. 118, 56–65 (2015)

    Article  Google Scholar 

  9. Kaloxylos, A., Groumas, A., Sarris, V., Katsikas, L., Magdalinos, P., Antoniou, E., Politopoulou, Z., Wolfert, S., Brewster, C., Eigenmann, R., et al.: A cloud-based farm management system: architecture and implementation. Comput. Electron. Agric. 100, 168–179 (2014)

    Article  Google Scholar 

  10. Mark, T.B., Whitacre, B., Griffin, T., et al.: Assessing the value of broadband connectivity for big data and telematics: technical efficiency. In: 2015 Annual Meeting, 31 January–3 February 2015, Atlanta, Georgia. Southern Agricultural Economics Association (2015)

    Google Scholar 

  11. Nüchter, A., Hertzberg, J.: Towards semantic maps for mobile robots. Rob. Auton. Syst. 56, 915–926 (2008)

    Article  Google Scholar 

  12. Kostavelis, I., Gasteratos, A.: Semantic mapping for mobile robotics tasks: a survey. Rob. Auton. Syst. 66, 86–103 (2015)

    Article  Google Scholar 

  13. Wolter, D., Wallgrün, J.O.: Qualitative spatial reasoning for applications: new challenges and the SparQ toolbox. IGI Global (2010)

    Google Scholar 

  14. Bechhofer, S.: Owl: web ontology language. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of Database Systems, pp. 2008–2009. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-39940-9

    Chapter  Google Scholar 

  15. Borrmann, A., Rank, E.: Topological operators in a 3D spatial query language for building information models. In. Proceedings of the 12th International Conference on Computing in Civil and Building Engineering (ICCCBE) (2008)

    Google Scholar 

  16. Daniele, L., Ferreira Pires, L.: An ontological approach to logistics. In: Enterprise Interoperability, Research and Applications in the Service-Oriented Ecosystem, IWEI 2013, ISTE Ltd., Wiley (2013)

    Google Scholar 

  17. Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: C-SPARQL: SPARQL for continuous querying. In: Proceedings of the 18th International Conference on World Wide Web, pp. 1061–1062. ACM (2009)

    Google Scholar 

Download references

Acknowledgment

Work by Deeken is supported by the German Federal Ministry of Education and Research in the SOFiA project (Grant No. 01FJ15028). The DFKI Osnabrück branch is supported by the state of Niedersachsen (VW-Vorab). The support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Wiemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deeken, H., Wiemann, T., Hertzberg, J. (2018). A Spatio-Semantic Model for Agricultural Environments and Machines. In: Mouhoub, M., Sadaoui, S., Ait Mohamed, O., Ali, M. (eds) Recent Trends and Future Technology in Applied Intelligence. IEA/AIE 2018. Lecture Notes in Computer Science(), vol 10868. Springer, Cham. https://doi.org/10.1007/978-3-319-92058-0_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92058-0_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92057-3

  • Online ISBN: 978-3-319-92058-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics