Skip to main content

Patterns of Go Gaming by Ising Model

  • Conference paper
  • First Online:
Pattern Recognition (MCPR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10880))

Included in the following conference series:

Abstract

Go game gaming patterns are very hard to identify. The stochastic interaction during a Go game makes highly difficult the pattern recognition in Go gaming. We use the Ising model, a classic method in statistics physics, for modeling the stochastic interaction among spins that result in well identified patterns of phenomena in this discipline. An Ising energy function is defined; this function allows the formal translation of Go game dynamics: the use of rules and tactics to elaborate the complex Go strategies. The result of Go game simulations shows a close fit with real game scores during the evolution of all the game.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. McCarthy, J.: AI as sport. Science 276, 1518–1519 (1997)

    Article  Google Scholar 

  2. Chen, K., Chen, Z.: Static analysis of life and death in the game of Go. Inf. Sci. Inf. Comput. Sci. 121, 113–134 (1999)

    Google Scholar 

  3. Benson, D.B.: Life in the game of Go. Inf. Sci. 10, 17–29 (1976)

    Article  MathSciNet  Google Scholar 

  4. Allis, L.V.: Searching for Solutions in Games and Artificial Intelligence. University of Limburg, The Netherlands (1994)

    Google Scholar 

  5. Richards, N., Moriarty, D.E., Miikkulainen, R.: Evolving neural networks to play Go. Appl. Intell. 8, 85–96 (1998)

    Article  Google Scholar 

  6. van der Werf, E.C.D., van den Herik, H.J., Uiterwijk, J.W.H.M.: Learning to estimate potential territory in the game of Go. In: van den Herik, H.J., Björnsson, Y., Netanyahu, N.S. (eds.) CG 2004. LNCS, vol. 3846, pp. 81–96. Springer, Heidelberg (2006). https://doi.org/10.1007/11674399_6

    Chapter  Google Scholar 

  7. Yee, A., Alvarado, M.: Well-time pattern recognition in Go gaming automation. Math. Methods Comput. Tech. Sci. Eng. 174–181 (2014)

    Google Scholar 

  8. Browne, C.B., Powley, E., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen, P., Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of Monte Carlo tree search methods. IEEE Trans. Comput. Intell. AI Games 4, 1–43 (2012)

    Article  Google Scholar 

  9. Silver, D., Guang, A., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mastering the game of Go with deep neural networks and tree search. Nature 529, 484–489 (2016)

    Article  Google Scholar 

  10. Bonaccorsi, E., Merlino, S., Pasero, M., Macedonio, G.: Microsommite: crystal chemistry, phase transitions, Ising model and Monte Carlo simulations. Phys. Chem. Miner. 28, 509–522 (2001)

    Article  Google Scholar 

  11. Matsuda, H.: The Ising model for population biology. Prog. Theoret. Phys. 66, 1078–1080 (1981)

    Article  MathSciNet  Google Scholar 

  12. Tkacik, G., Schneidman, E., Berry, M.J.I., Bialek, W.: Ising models for networks of real neurons (2006)

    Google Scholar 

  13. Hue, M., Riffle, M., Vert, J.-P., Noble, W.: Large-scale prediction of protein-protein interactions from structures. BMC Bioinform. 11, 1–9 (2010)

    Article  Google Scholar 

  14. Peter, J., Freyer, R., Smith, M.F., Scarfone, C., Coleman, R.E., Jaszczak, R.J.: Nuclear medicine image segmentation using a connective network. In: Nuclear Science Symposium, Conference Record, pp. 1782–1786. IEEE (1996)

    Google Scholar 

  15. Aoki, M.: New Approaches to Macroeconomic Modeling: Evolutionary Stochastic Dynamics, Multiple Equilibria, and Externalities as Field Effects. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  16. Wolkenhauer, O., Fell, D., De Meyts, P., Bluthgen, N., Herzel, H., Le Novere, N., Hofer, T., Schurrle, K., van Leeuwen, I.: SysBioMed report: advancing systems biology for medical applications. IET Syst. Biol. 3, 131–136 (2009)

    Article  Google Scholar 

  17. Barradas-Bautista, D., Alvarado-Mentado, M., Agostino, M., Cocho, G.: Cancer growth and metastasis as a metaphor of Go gaming: an Ising model approach. PLOS ONE (2018)

    Google Scholar 

Download references

Acknowledgment

To Carlos Villarreal from Instituto de Física, Universidad Nacional Autónoma de México, who advised us on apply Ising model for displaying stochastic processes in physics. Arturo Yee’ special thank to PROFAPI Programa de Fomento y Apoyo a Proyectos de Investigación, number PROFAPI2015/304.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arturo Yee or Matías Alvarado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yee, A., Alvarado, M. (2018). Patterns of Go Gaming by Ising Model. In: Martínez-Trinidad, J., Carrasco-Ochoa, J., Olvera-López, J., Sarkar, S. (eds) Pattern Recognition. MCPR 2018. Lecture Notes in Computer Science(), vol 10880. Springer, Cham. https://doi.org/10.1007/978-3-319-92198-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92198-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92197-6

  • Online ISBN: 978-3-319-92198-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics