Abstract
Go game gaming patterns are very hard to identify. The stochastic interaction during a Go game makes highly difficult the pattern recognition in Go gaming. We use the Ising model, a classic method in statistics physics, for modeling the stochastic interaction among spins that result in well identified patterns of phenomena in this discipline. An Ising energy function is defined; this function allows the formal translation of Go game dynamics: the use of rules and tactics to elaborate the complex Go strategies. The result of Go game simulations shows a close fit with real game scores during the evolution of all the game.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
McCarthy, J.: AI as sport. Science 276, 1518–1519 (1997)
Chen, K., Chen, Z.: Static analysis of life and death in the game of Go. Inf. Sci. Inf. Comput. Sci. 121, 113–134 (1999)
Benson, D.B.: Life in the game of Go. Inf. Sci. 10, 17–29 (1976)
Allis, L.V.: Searching for Solutions in Games and Artificial Intelligence. University of Limburg, The Netherlands (1994)
Richards, N., Moriarty, D.E., Miikkulainen, R.: Evolving neural networks to play Go. Appl. Intell. 8, 85–96 (1998)
van der Werf, E.C.D., van den Herik, H.J., Uiterwijk, J.W.H.M.: Learning to estimate potential territory in the game of Go. In: van den Herik, H.J., Björnsson, Y., Netanyahu, N.S. (eds.) CG 2004. LNCS, vol. 3846, pp. 81–96. Springer, Heidelberg (2006). https://doi.org/10.1007/11674399_6
Yee, A., Alvarado, M.: Well-time pattern recognition in Go gaming automation. Math. Methods Comput. Tech. Sci. Eng. 174–181 (2014)
Browne, C.B., Powley, E., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen, P., Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of Monte Carlo tree search methods. IEEE Trans. Comput. Intell. AI Games 4, 1–43 (2012)
Silver, D., Guang, A., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mastering the game of Go with deep neural networks and tree search. Nature 529, 484–489 (2016)
Bonaccorsi, E., Merlino, S., Pasero, M., Macedonio, G.: Microsommite: crystal chemistry, phase transitions, Ising model and Monte Carlo simulations. Phys. Chem. Miner. 28, 509–522 (2001)
Matsuda, H.: The Ising model for population biology. Prog. Theoret. Phys. 66, 1078–1080 (1981)
Tkacik, G., Schneidman, E., Berry, M.J.I., Bialek, W.: Ising models for networks of real neurons (2006)
Hue, M., Riffle, M., Vert, J.-P., Noble, W.: Large-scale prediction of protein-protein interactions from structures. BMC Bioinform. 11, 1–9 (2010)
Peter, J., Freyer, R., Smith, M.F., Scarfone, C., Coleman, R.E., Jaszczak, R.J.: Nuclear medicine image segmentation using a connective network. In: Nuclear Science Symposium, Conference Record, pp. 1782–1786. IEEE (1996)
Aoki, M.: New Approaches to Macroeconomic Modeling: Evolutionary Stochastic Dynamics, Multiple Equilibria, and Externalities as Field Effects. Cambridge University Press, Cambridge (1998)
Wolkenhauer, O., Fell, D., De Meyts, P., Bluthgen, N., Herzel, H., Le Novere, N., Hofer, T., Schurrle, K., van Leeuwen, I.: SysBioMed report: advancing systems biology for medical applications. IET Syst. Biol. 3, 131–136 (2009)
Barradas-Bautista, D., Alvarado-Mentado, M., Agostino, M., Cocho, G.: Cancer growth and metastasis as a metaphor of Go gaming: an Ising model approach. PLOS ONE (2018)
Acknowledgment
To Carlos Villarreal from Instituto de Física, Universidad Nacional Autónoma de México, who advised us on apply Ising model for displaying stochastic processes in physics. Arturo Yee’ special thank to PROFAPI Programa de Fomento y Apoyo a Proyectos de Investigación, number PROFAPI2015/304.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Yee, A., Alvarado, M. (2018). Patterns of Go Gaming by Ising Model. In: Martínez-Trinidad, J., Carrasco-Ochoa, J., Olvera-López, J., Sarkar, S. (eds) Pattern Recognition. MCPR 2018. Lecture Notes in Computer Science(), vol 10880. Springer, Cham. https://doi.org/10.1007/978-3-319-92198-3_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-92198-3_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-92197-6
Online ISBN: 978-3-319-92198-3
eBook Packages: Computer ScienceComputer Science (R0)