Skip to main content

Extreme Points of Convex Polytopes Derived from Lattice Autoassociative Memories

  • Conference paper
  • First Online:
Pattern Recognition (MCPR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10880))

Included in the following conference series:

Abstract

This paper presents a new algorithm to find several types of extreme points of higher dimensional lattice polytopes enclosing a given finite set as derived from the canonical min/max lattice autoassociative memories. The algorithm first computes the basic extreme points that include the corners of the hyperbox containing the data together with the translated min/max points. Then, the algorithm computes additional extreme points such as entry or exit line points from the basic ones. Using convex geometry and lattice algebra, we discuss the rationale of the proposed technique with simple illustrative examples.

G. Urcid thanks SNI-CONACYT for partial financial support, grant # 22036.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eggleston, H.G.: Convexity. Cambridge University Press, Cambridge (1977)

    MATH  Google Scholar 

  2. Kelly, P.J., Weiss, M.L.: Geometry and Convexity - A Study in Mathematical Methods. Wiley, New York (1979)

    MATH  Google Scholar 

  3. Brønsted, A.: An Introduction to Convex Polytopes. Springer, New York (1983)

    Book  Google Scholar 

  4. De Berg, M., Van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry - Algorithms and Applications, 2nd edn. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-540-77974-2

    Book  MATH  Google Scholar 

  5. Ritter, G.X., Urcid, G., Iancu, L.: Reconstruction of patterns from noisy inputs using morphological associative memories. J. Math. Imaging Vis. 19(2), 95–111 (2003)

    Article  MathSciNet  Google Scholar 

  6. Ritter, G.X., Gader, P.: Fixed points of lattice transforms and lattice associative memories. In: Hawkes, P. (ed.) Advances in Imaging and Electron Physics, vol. 144, pp. 165–242. Academic Press, San Diego (2006)

    Google Scholar 

  7. Graña, M., Gallego, J., Torrealdea, F.J., D’Anjou, A.: On the application of associative morphological memories to hyperspectral image analysis. In: Mira, J., Álvarez, J.R. (eds.) IWANN 2003. LNCS, vol. 2687, pp. 567–574. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44869-1_72

    Chapter  Google Scholar 

  8. Ritter, G.X., Urcid, G.: Lattice algebra approach to endmember determination in hyperspectral imagery. In: Hawkes, P. (ed.) Advances in Imaging and Electron Physics, vol. 160, pp. 113–169. Academic Press, San Diego (2010)

    Google Scholar 

  9. Ritter, G.X., Urcid, G.: A lattice matrix method for hyperspectral image unmixing. Inf. Sci. 18(10), 1787–1803 (2011)

    Article  MathSciNet  Google Scholar 

  10. Urcid, G., Valdiviezo, J.C., Ritter, G.X.: Lattice algebra approach to color image segmentation. J. Math. Imaging Vis. 42(2–3), 150–162 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Valdiviezo, J.C., Urcid, G.: Convex set approaches for material quantification in hyperspectral imagery. In: Rustamov, R.B., Salahova, S.E. (eds.) Earth Observation, pp. 153–174. InTech, Rijeka (2012)

    Google Scholar 

  12. Lechuga, E., Valdiviezo, J.C., Urcid, G.: Multispectral image restoration of historical documents based on LAAMs and mathematical morphology. Proc. SPIE 9216, 921604:1–10 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Urcid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ritter, G.X., Urcid, G. (2018). Extreme Points of Convex Polytopes Derived from Lattice Autoassociative Memories. In: Martínez-Trinidad, J., Carrasco-Ochoa, J., Olvera-López, J., Sarkar, S. (eds) Pattern Recognition. MCPR 2018. Lecture Notes in Computer Science(), vol 10880. Springer, Cham. https://doi.org/10.1007/978-3-319-92198-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92198-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92197-6

  • Online ISBN: 978-3-319-92198-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics