Skip to main content

Automated Detection of Hummingbirds in Images: A Deep Learning Approach

  • Conference paper
  • First Online:
Pattern Recognition (MCPR 2018)

Abstract

The analysis of natural images has been the topic of research in uncountable articles in computer vision and pattern recognition (e.g., natural images has been used as benchmarks for object recognition and image retrieval). However, despite the research progress in such field, there is a gap in the analysis of certain type of natural images, for instance, those in the context of animal behavior. In fact, biologists perform the analysis of natural images manually without the aid of techniques that were supposedly developed for this purpose. In this context, this paper presents a study on automated methods for the analysis of natural images of hummingbirds with the goal to assist biologists in the study of animal behavior. The automated analysis of hummingbird behavior is challenging mainly because of (1) the speed at which these birds move and interact; (2) the unpredictability of their trajectories; and (3) its camouflage skills. We report a comparative study of two deep learning approaches for the detection of hummingbirds in their nest. Two variants of transfer learning from convolutional neural networks (CNNs) are evaluated in real imagery for hummingbird behavior analysis. Transfer learning is adopted because not enough images are available for training a CNN from scratch, besides, transfer learning is less time consuming. Experimental results are encouraging, as acceptable classification performance is achieved with CNN-based features. Interestingly, a pretrained CNN without fine tunning and a standard classifier performed better in the considered data set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.image-net.org/.

  2. 2.

    http://www.vision.caltech.edu/Image_Datasets/Caltech101/.

  3. 3.

    http://host.robots.ox.ac.uk/pascal/VOC/.

References

  1. Duygulu, P., Barnard, K., de Freitas, J.F.G., Forsyth, D.A.: Object recognition as machine translation: learning a lexicon for a fixed image vocabulary. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 97–112. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47979-1_7

    Chapter  Google Scholar 

  2. Barnard, K., Duygulu, P., Forsyth, D., de Freitas, N., Blei, D.M., Jordan, M.I.: Matching words and pictures. J. Mach. Learn. Res. 3(Feb), 1107–1135 (2003)

    MATH  Google Scholar 

  3. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. In: Proceedings of CVPRW, p. 178 (2004)

    Google Scholar 

  4. Griffin, G., Holub, G., Perona, P.: The caltech-256. Technical report. California Institute of Technology, Pasadena, California (2007)

    Google Scholar 

  5. Everingham, M., Zisserman, A., Williams, C.K.I., Van Gool, L.: The PASCAL Visual Object Classes Challenge 2006 (VOC2006) Results. http://www.pascal-network.org/challenges/VOC/voc2006/results.pdf

  6. Russakovsky, O., Deng, J., Hao, S., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  7. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR 2009 (2009)

    Google Scholar 

  8. Fink, M., Ullman, S.: From aardvark to zorro: a benchmark for mammal image classification. Int. J. Comput. Vis. 77(1), 143–156 (2008)

    Article  Google Scholar 

  9. Escalante, H.J., Hernández, C.A., Gonzalez, J.A., López-López, A., Montes, M., Morales, E.F., Sucar, L.E., Villaseñor, L., Grubinger, M.: The segmented and annotated IAPR TC-12 benchmark. Comput. Vis. Image Underst. 114(4), 419–428 (2010)

    Article  Google Scholar 

  10. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: CVPR (2015)

    Google Scholar 

  11. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)

    Article  Google Scholar 

  12. del Coro Arizmendi, M., Rodríguez-Flores, C.I.: How many plant species do hummingbirds visit? Ornitol. Neotrop. 23, 71–75 (2012)

    Google Scholar 

  13. Elliott, A., del Hoyo, J., Sargatal, J.: Handbook of the Birds of the World, Volume 5, Barn-Owls to Hummingbirds, pp. 388–435. Lynx Edicions, Barcelona (1999)

    Google Scholar 

  14. Colwell, R.K.: Rensch’s rule crosses the line: convergent allometry of sexual size dimorphism in hummingbirds and flower mites. Am. Nat. 156(5), 495–510 (2000)

    Google Scholar 

  15. Bleiweiss, R.: Phylogeny, body mass, and genetic cponsequences of lek-mating behavior in hummingbirds (1998)

    Article  Google Scholar 

  16. Johnsgard, P.A.: The Hummingbirds of North America. Smithsonian Institution, Washington (2016)

    Google Scholar 

  17. Vleck, C.M.: Hummingbird incubation: female attentiveness and egg temperature. Oecologia 51(2), 199–205 (1981)

    Article  Google Scholar 

  18. Baltosser, W.H.: Nesting success and productivity of hummingbirds in Southwestern New Mexico and Southeastern Arizona. Wilson Bull. 98(3), 353–367 (1986)

    Google Scholar 

  19. Brown, B.T.: Nesting chronology, density and habitat use of black-chinned hummingbirds along the Colorado River Arizona. J. Field Ornithol. 63(4), 393–400 (1992)

    Google Scholar 

  20. Greeney, H.F., Hough, E.R., Hamilton, C.E., Wethington, S.M.: Nestling growth and plumage development of the black-chinned hummingbird (Archilochus alexandri) in Southeastern Arizona. Huitzil. Revista Mexicana de Ornitología 9(2), 35–42 (2008)

    Google Scholar 

  21. Greeney, H.F., Wethington, S.M.: Proximity to active accipiter nests reduces nest predation of black-chinned hummingbirds. Wilson J. Ornithol. 121(4), 809–812 (2009)

    Article  Google Scholar 

  22. Smith, D.M., Finch, D.M., Hawksworth, D.L.: Black-chinned hummingbird nest-site selection and nest survival in response to fuel reduction in a Southwestern Riparian forest. Condor 111(4), 641–652 (2009)

    Article  Google Scholar 

  23. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning, ICML 2010, pp. 807–814 (2010)

    Google Scholar 

  24. Memisevic, R., Zach, C., Pollefeys, M., Hinton, G.E.: Gated softmax classification. In: Advances in Neural Information Processing Systems, pp. 1603–1611 (2010)

    Google Scholar 

  25. Dai, W., Yang, Q., Xue, G.-R., Yu, Y.: Boosting for transfer learning. In: Proceedings of the 24th International Conference on Machine Learning, pp. 193–200. ACM (2007)

    Google Scholar 

  26. Raina, R., Battle, A., Lee, H., Packer, B., Ng, A.Y.: Self-taught learning: transfer learning from unlabeled data. In: Proceedings of the 24th International Conference on Machine Learning, pp. 759–766. ACM (2007)

    Google Scholar 

  27. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  28. Taylor, M.E., Stone, P.: Transfer learning for reinforcement learning domains: a survey. J. Mach. Learn. Res. 10(Jul), 1633–1685 (2009)

    MathSciNet  MATH  Google Scholar 

  29. Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level image representations using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1717–1724 (2014)

    Google Scholar 

  30. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: DeCAF: a deep convolutional activation feature for generic visual recognition. In: International Conference on Machine Learning, pp. 647–655 (2014)

    Google Scholar 

  31. Pasquale, G., Ciliberto, C., Rosasco, L., Natale, L.: Object identification from few examples by improving the invariance of a deep convolutional neural network. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, pp. 4904–4911. IEEE (2016)

    Google Scholar 

  32. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., et al.: TensorFlow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

  33. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of CVPR, pp. 2818–2826 (2016)

    Google Scholar 

  34. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. JMLR 7(Jan), 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  35. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Jair Escalante .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Serrano, S.A. et al. (2018). Automated Detection of Hummingbirds in Images: A Deep Learning Approach. In: Martínez-Trinidad, J., Carrasco-Ochoa, J., Olvera-López, J., Sarkar, S. (eds) Pattern Recognition. MCPR 2018. Lecture Notes in Computer Science(), vol 10880. Springer, Cham. https://doi.org/10.1007/978-3-319-92198-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92198-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92197-6

  • Online ISBN: 978-3-319-92198-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics