Skip to main content

Frequency Island and Nonlinear Vibrating Systems

  • Conference paper
  • First Online:
Intelligent Interactive Multimedia Systems and Services (KES-IIMSS-18 2018)

Abstract

Piecewise linear vibration isolator system is one of the development to introduce dual rate stiffness and damping. There are several vibrating behavior if the system is designed properly. Analytical treatment of the system determines some difficulties such as jump. This investigation indicates that such strong nonlinear systems have a new phenomenon called Frequency Island in their frequency response plot. Frequency Island is a possible isolated frequency response that the vibrating system may jump into the island and stays there until the excitation frequency moves out of the range of the island.

In this student existence, appearance, growing and disappearing of frequency island will be studied and examined. Frequency Island corresponds to large amplitude vibration for certain range of system parameters and considered as a dangerous phenomena in real system. As a result, understanding its appearance will help designers and engineers to design the system to avoid Frequency Island.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aagaah, M.R., Mahmoudian, N., Jazar, R.N., Mahinfalah, M.: Frequency response of vibration isolators with saturation spring element. In: 20th ASME Biennial Conference on Mechanical Vibration and Noise, Long Beach, CA, 24–28 September 2005 (2005)

    Google Scholar 

  • Alam, F., Jazar, R.N., Faheem, A., Smith, L.V.: A study of vehicle ride performance using a quarter car model and half car model. In: ASME International Mechanical Engineering Congress and Exposition, Vancouver, British Columbia, Canada, 12–18 November 2010 (2010)

    Google Scholar 

  • Alkhatib, R., Jazar, R.N., Golnaraghi, M.F.: Optimal design of passive linear mounts with genetic algorithm method. J. Sound Vibr. 275(3–5), 665–691 (2004)

    Article  Google Scholar 

  • Christopherson, J., Jazar, R.N.: Development of a new design hydraulic engine mount. In: ASME International Mechanical Engineering Congress and Exposition, Orlando, Florida, 5–11 November 2005 (2005a)

    Google Scholar 

  • Christopherson, J., Jazar, R.N.: Dynamic behavior comparison of passive hydraulic engine mounts, Part 1: mathematical analysis. J. Sound Vibr. 290, 1040–1070 (2006a)

    Article  Google Scholar 

  • Christopherson, J., Jazar, R.N.: Dynamic behavior comparison of passive hydraulic engine mounts, Part 2: finite element analysis. J. Sound Vibr. 290, 1071–1090 (2006b)

    Article  Google Scholar 

  • Christopherson, J., Jazar, R.N.: Optimization of classical hydraulic engine mounts based on RMS method. J. Shock Vibr. 12(2), 119–147 (2005b)

    Article  Google Scholar 

  • Christopherson, J., Gustin, J., Jazar, R.N., Mahinfalah, M.: RMS optimization of a standard hydraulic engine mount. In: The 2004 ASME International Mechanical Engineering Congress and Exposition, Anaheim, CA, 14–19 November 2004 (2004)

    Google Scholar 

  • Christopherson, J., Jazar, R.N., Mahinfalah, M.: Chaotic behavior of hydraulic engine mount. In: ASME International Mechanical Engineering Congress and Exposition, Chicago, Illinois, 5–10 November 2006 (2006c)

    Google Scholar 

  • Christopherson, J., Jazar, R.N., Mahinfalah, M.: Dynamic analysis and nonlinear characteristics of suspended decoupler hydraulic engine mounts. In: CSME Forum 2006, Symposium on Intelligent Vehicles and Transportation Systems, Calgary, Alberta, Canada, 21–23 May 2006 (2006d)

    Google Scholar 

  • Christopherson, J., Mahinfalah, M., Jazar, R.N.: Frequency response of a base excited system with hydraulic mount. In: ASME-IMECE Symposium on Dynamic Response of Advanced Materials and Structures, Washington D.C., 15–21 November 2003 (2003)

    Google Scholar 

  • Christopherson, J., Mahinfalah, M., Jazar, R.N.: Suspended decoupler: a new design of hydraulic engine mount. Adv. Acoust. Vibr. 2012, 11 (2012). Article ID 826497

    Google Scholar 

  • Den Hartog, J.P., Heiles, R.M.: Forced vibration in nonlinear systems with various combinations of linear springs. Trans. ASME J. Appl. Mech. 58, 127–130 (1936)

    Google Scholar 

  • Den Hartog, J.P., Mikina, S.J.: Forced vibrations with nonlinear spring constraints. Trans. ASME 54, 157 (1932). Paper APM-54-15

    Google Scholar 

  • Deshpande, S., Mehta, S., Jazar, R.N.: Jump avoidance conditions for piecewise linear vibration isolator. In: 20th ASME Biennial Conference on Mechanical Vibration and Noise, Long Beach, CA, 24–28 September 2005 (2005a)

    Google Scholar 

  • Deshpande, S., Mehta, S., Jazar, R.N.: Optimization of secondary suspension of piecewise linear vibration isolation systems. Int. J. Mech. Sci. 48(4), 341–377 (2006)

    Article  Google Scholar 

  • Deshpande, S., Mehta, S., Jazar, R.N.: Sensitivity of jump avoidance condition of piecewise linear vibration isolator to dynamical parameters. In: ASME International Mechanical Engineering Congress and Exposition, Orlando, Florida, USA, 5–11 November 2005b (2005b)

    Google Scholar 

  • Esmailzadeh, E., Jazar, R.N., Mehri, B.: Vibration of road vehicles with nonlinear suspension. Int. J. Eng. 10(4), 209–218 (1997)

    Google Scholar 

  • Esmailzadeh, E., Mehri, B., Jazar, R.N.: Periodic solution of a second order autonomous, nonlinear system. J. Nonlinear Dyn. 10(4), 307–316 (1996)

    Article  MathSciNet  Google Scholar 

  • Golnaraghi, M.F., Jazar, R.N.: Development and analysis of a simplified nonlinear model of a hydraulic engine mount. J. Vibr. Control 7(4), 495–526 (2001)

    Article  Google Scholar 

  • Golnaraghi, M.F., Jazar, R.N.: Development and analysis of a simplified nonlinear model of a hydraulic engine mount. In: Eight Conference of Nonlinear Vibrations, Stability, and Dynamics of Structures, University of Virginia, Blacksburg, 23–27 July 2000 (2000)

    Google Scholar 

  • Jazar, R.N.: Advanced Dynamics: Rigid Body, Multibody, and Aerospace Applications. Wiley, New York (2011)

    Book  Google Scholar 

  • Jazar, R.N.: Advanced Vibrations: A Modern Approach, 3rd edn. Springer, New York (2013)

    Book  Google Scholar 

  • Jazar, R.N., Golnaraghi, M.F.: Steady state vibrations of a piecewise linear system. In: 18th ASME Biennial Conference on Mechanical Vibration and Noise, Pittsburgh, Pennsylvania, USA, 9–12 September 2001 (2001)

    Google Scholar 

  • Jazar, R.N., Golnaraghi, M.F.: Engine mounts for automotive applications: a survey. Shock Vibr. Digest 34(5), 363–379 (2002a)

    Google Scholar 

  • Jazar, R.N., Golnaraghi, M.F.: Nonlinear modeling, experimental verification, and theoretical analysis of a hydraulic engine mount. J. Vibr. Control 8(1), 87–116 (2002b)

    MATH  Google Scholar 

  • Jazar, R.N.: Frequency island in nonlinear vibration isolator. In: 3rd Canadian Conference on Nonlinear Solid Mechanics, Toronto, Ontario, Canada, 25–29 June 2008 (2008)

    Google Scholar 

  • Jazar, R.N., Houim, R., Narimani, A., Golnaraghi, F.: Nonlinear passive engine mount, frequency response and jump avoidance. J. Vibr. Control 12(11), 1205–1237 (2006a)

    Google Scholar 

  • Jazar, R.N., Mahinfalah, M., Aagaah, M.R., Nazari, G.: Comparison of exact and approximate frequency response of a piecewise linear vibration isolator, DETC2005-84522. In: 20th ASME Biennial Conference on Mechanical Vibration and Noise, Long Beach, CA, 24–28 September 2005 (2005)

    Google Scholar 

  • Jazar, R.N., Mahinfalah, M., Alimi, M.A., Khazaei, A.: Periodic behavior of a nonlinear third order vibrating system. In: International Congress and Exposition, ASME-IMECE 2002, New Orleans, Louisiana, 17–22 November 2002 (2002a)

    Google Scholar 

  • Jazar, R.N., Mahinfalah, M., Deshpande, S.: Design of a piecewise linear vibration isolator for jump avoidance. IMechE Part K J. Multi-Body Dyn. 221(K3), 441–450 (2007)

    Google Scholar 

  • Jazar, R.N., Mahinfalah, M., Christopherson, J.: Suspended decoupler design of hydraulic engine mount. In: ASME International Mechanical Engineering Congress and Exposition (IMECE 2011), Denver, Colorado, 11–17 November 2011 (2011)

    Google Scholar 

  • Jazar, R.N., Mahinfalah, M., Narimani, A., Golnaraghi, M.F.: Smart passive suspension design consideration for one DOF systems. In: CSME Forum 2006, Symposium on Intelligent Vehicles and Transportation Systems, Calgary, Alberta, Canada, 21–23 May 2006 (2006b)

    Google Scholar 

  • Jazar, R.N., Narimani, A., Golnaraghi, M.F., Swanson, D.A.: Practical frequency and time optimal design of passive linear vibration isolation mounts. J. Veh. Syst. Dyn. 39(6), 437–466 (2003)

    Article  Google Scholar 

  • Jazar, R.N., Narimani, A., Golnaraghi, M.F.: Sensitivity analysis of frequency response of a piecewise linear system in frequency island. In: Ninth Conference of Nonlinear Vibrations, Stability, and Dynamics of Structures, Blacksburg, Virginia, 28 July–1 August 2002 (2002b)

    Google Scholar 

  • Jazar, R.N.: Vehicle Dynamics: Theory and Application, 3rd edn. Springer, New York (2018)

    Google Scholar 

  • Marzbani, H., Fard, M., Jazar, R.N.: Chaotic behavior of hydraulic engine mount. In: 20th International Conference on Knowledge Based and Intelligent Information and Engineering Systems, KES 2016, New York, United Kingdom, 5–7 September 2016 (2016)

    Google Scholar 

  • Marzbani, H., Jazar, R.N., Fard, M.: Comparison between hydraulic engine mounts and piecewise linear vibration isolators, science and motor vehicles 2013. In: JUMV International Automotive Conference 2013 Belgrade, Serbia, 23–24 April 2013 (2013a)

    Google Scholar 

  • Marzbani, H., Jazar, R.N., Fard, M.: Hydraulic engine mounts: a survey. J. Vibr. Control 19(16), 1439–1463 (2013b)

    Article  Google Scholar 

  • Marzbani, H., Jazar, R.N., Khazaei, A.: Smart passive vibration isolation: requirements and unsolved problems. J. Appl. Nonlinear Dyn. 1(4), 341–386 (2012)

    Article  Google Scholar 

  • Narimani, A., Golnaraghi, M.F., Jazar, R.N.: Frequency response of a piecewise linear system. J. Vibr. Control 10(12), 1775–1894 (2004a)

    Google Scholar 

  • Narimani, A., Jazar, R.N., Golnaraghi, M.F.: Sensitivity analysis of frequency response of a piecewise linear system in frequency island. J. Vibr. Control 10(2), 175–198 (2004b)

    Google Scholar 

  • Narimani, A., Golnaraghi, M.F., Jazar, R.N.: Optimizing piecewise linear isolator for steady state vibration. In: ASME-IMECE Symposium on Dynamic Response of Advanced Materials and Structures, Washington D.C., 15–21 November 2003 (2003)

    Google Scholar 

  • Narimani, A., Jazar, R.N., Golnaraghi, M.F.: Vibration analysis of a piecewise linear system. In: USNCTAM14 Fourteenth U.S. National Congress of Theoretical and Applied Mechanics, Blacksburg, Virginia, 23–28 June 2002 (2002)

    Google Scholar 

  • Natsiavas, S., Gonzalez, H.: Vibration of Harmonically Excited Oscillators with Asymmetric Constraints. Trans. ASME J. Appl. Mech. 59, S284–S290 (1992)

    Article  Google Scholar 

  • Natsiavas, S.: Dynamic of piecewise linear oscillators with Van der Pol type damping. Int. J. Non-Linear Mech. 26(¾), 349–366 (1991)

    Article  Google Scholar 

  • Nayfeh, A.H., Mook, D.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  • Pogorilyi, O., Trivailo, M., Jazar, R.N.: Challenges in exact response of piecewise linear vibration isolator. In: Dai, L., Jazar, R.N. (eds.) Nonlinear Approaches in Engineering Applications, vol. 3. Springer, New York (2015a)

    Google Scholar 

  • Pogorilyi, O., Trivailo, M., Jazar, R.N.: On the piecewise linear exact solution. Nonlinear Eng. Model. Appl. 3(4), 189–196 (2014)

    Google Scholar 

  • Pogorilyi, O., Trivailo, M., Jazar, R.N.: Sensitivity analysis of piecewise linear vibration isolator with dual rate spring and damper. Nonlinear Eng. Model. Appl. 4(1), 1–13 (2015b)

    Article  Google Scholar 

  • Schulman, J.N.: Chaos in piecewise linear systems. Phys. Rev. A 28(1), 477–479 (1983)

    Article  Google Scholar 

  • Stahl, P., Jazar, R.N.: Frequency response analysis of piecewise nonlinear vibration isolator. In: 20th ASME Biennial Conference on Mechanical Vibration and Noise, Long Beach, CA, 24–28 September 2005 (2005a)

    Google Scholar 

  • Stahl, P., Jazar, R.N.: Stability analysis of a piecewise nonlinear vibration isolator. In: ASME International Mechanical Engineering Congress and Exposition, Orlando, Florida, 5–11 November 2005 (2005b)

    Google Scholar 

  • Van del Pol, B.: Phil. Mag. 3(65) (1927)

    Google Scholar 

  • Virgin, L.N.: Introduction to Experimental Nonlinear Dynamics. Cambridge University Press, New York (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching Nok To .

Editor information

Editors and Affiliations

Appendix

Appendix

Parameters of the analytical equation to predict the frequency response of a piecewise linear suspension system

$$ Z_{1} = \uppi^{2} \left( {A^{2} - 1} \right) $$
$$ \begin{aligned} Z_{2} & = \uppi A\left[ {\upomega_{3}^{2} \left( {4\updelta \,\cos \left( {\sin^{ - 1} (\frac{\updelta }{A})} \right) - A\,\sin \left( {2\sin^{ - 1} (\frac{\updelta }{A})} \right) - \uppi A + 2A\,\sin^{ - 1} (\frac{\updelta }{A})} \right)} \right] \\ & \quad + \, 2A^{2} \left[ {\left( {\upxi_{1} \upomega_{1} + \upxi_{3} \upomega_{3} } \right)\left( {\uppi - \sin \left( {2\sin^{ - 1} (\frac{\updelta }{A})} \right) - 2\sin^{ - 1} (\frac{\updelta }{A})} \right) } \right. \\ & \quad +\, \left. {\upxi_{1} \upomega_{1} \left( {\sin \left( {2\sin^{ - 1} (\frac{\updelta }{A})} \right) + 2\sin^{ - 1} (\frac{\updelta }{A})} \right)} \right]^{2} - \upomega_{1}^{2} \uppi^{2} \\ \end{aligned} $$
$$ \begin{aligned} Z_{3} & = 4\upomega_{1}^{2} A^{2} \left[ {\upxi_{1} \upomega_{1} \left( {\sin (2\sin^{ - 1} \left( {\frac{\updelta }{A}} \right)) + 2\sin^{ - 1} \left( {\frac{\updelta }{A}} \right)} \right)} \right. \\ & \quad +\, \left. {\left( {\upxi_{1} \upomega_{1} + \upxi_{3} \upomega_{3} } \right)\left( {\uppi - \sin (2\sin^{ - 1} \left( {\frac{\updelta }{A}} \right)) - 2\sin^{ - 1} \left( {\frac{\updelta }{A}} \right)} \right)} \right]^{2} + \upomega_{1}^{4} \uppi^{2} \\ & \quad +\, \left( { - \upomega_{3}^{2} A\,\sin (2\sin^{ - 1} \left( {\frac{\updelta }{A}} \right)) - \upomega_{3}^{2} \uppi A + 2\upomega_{3}^{2} \sin^{ - 1} \left( {\frac{\updelta }{A}} \right)A + 4\upomega_{3}^{2} \updelta \,\cos (\sin^{ - 1} \left( {\frac{\updelta }{A}} \right))} \right)^{2} \\ \end{aligned} $$
$$ Z_{6} = 2A\left( {\upomega_{1}^{2} + \upsigma } \right)\left[ {\left( {\upxi_{1} \upomega_{1} + \upxi_{3} \upomega_{3} } \right)\left( {2\sin^{ - 1} \left( {\frac{\updelta }{A}} \right) - \uppi - \sin (\sin^{ - 1} \left( {\frac{\updelta }{A}} \right)} \right)} \right] $$
$$ Z_{7} = 2A\left( {\upomega_{1}^{2} + \upsigma } \right)\upxi_{1} \upomega_{1} \left( {2\,\sin^{ - 1} \left( {\frac{\updelta }{A}} \right) + \sin (\sin^{ - 1} \left( {\frac{\updelta }{A}} \right))} \right) $$
$$ Z_{8} = \uppi A\upsigma + \upomega_{3}^{2} A\left( {2\sin^{ - 1} \left( {\frac{\updelta }{A}} \right) - \uppi - \sin (2\sin^{ - 1} \left( {\frac{\updelta }{A}} \right))} \right) + 4\updelta \upomega_{3}^{2} \cos (\sin^{ - 1} \left( {\frac{\updelta }{A}} \right) $$
$$ \begin{aligned} Z_{10} & = 4f_{3}^{4} \upxi_{3}^{4} Z_{15}^{4} + 32\uppi^{2} f_{1} \upxi_{1}^{{}} f_{3}^{3} \upxi_{3}^{3} Z_{15}^{3} + 4\uppi \upxi_{3}^{2} f_{3}^{2} Z_{15}^{2} \left( {f_{3}^{2} Z_{16} + 4\uppi^{3} f_{1}^{2} \left( {6\uppi^{4} \upxi_{1}^{2} - 1} \right)} \right) \\ & \quad + \, 16\uppi^{3} \upxi_{1}^{{}} \upxi_{3}^{{}} f_{1} f_{3}^{{}} Z_{15}^{2} \left( {f_{3}^{2} - 4\uppi^{3} f_{1}^{2} \left( {1 - 2\upxi_{1}^{2} } \right)} \right) + 16\uppi^{5} \upxi_{1}^{2} f_{1}^{2} f_{3}^{2} Z_{16}^{{}} \\ \end{aligned} $$
$$ Z_{11} = 64\uppi^{3} \updelta \sqrt {1 - \frac{{\updelta^{2} }}{{A^{2} }}} \left( {\upxi_{3}^{2} f_{3}^{4} Z_{15}^{2} + 4\uppi^{2} \upxi_{1}^{{}} \upxi_{3}^{{}} f_{1} f_{3}^{3} Z_{15} + 4\uppi^{4} \upxi_{1}^{2} f_{1}^{2} f_{3}^{2} } \right) $$
$$ Z_{12} = \uppi^{2} f_{3}^{4} Z_{15}^{2} - 8\uppi^{5} f_{1}^{2} f_{3}^{2} Z_{15} + 16\uppi^{8} f_{1}^{4} \begin{array}{*{20}c} {} & {} \\ \end{array} Z_{13} = 32\uppi^{4} \updelta \sqrt {1 - \frac{{\updelta^{2} }}{{A^{2} }}} f_{3}^{2} \left( {f_{3}^{2} Z_{15}^{2} - 8\uppi^{3} f_{1}^{2} } \right) $$
$$ Z_{14} = 256\uppi^{6} f_{3}^{4} \updelta^{4} \left( {1 - \frac{1}{{A^{2} }}} \right)\begin{array}{*{20}c} {} & {} \\ \end{array} Z_{15} = - 2\uppi \,\sin \left( {2\sin^{ - 1} (\frac{\updelta }{A})} \right) + 2\uppi^{2} - 4\uppi \left( {\sin^{ - 1} (\frac{\updelta }{A})} \right)^{2} $$
$$ Z_{16} = - 4\sin \left( {2\sin^{ - 1} (\frac{\updelta }{A})} \right) - 8\uppi^{3} + 8\uppi^{2} \left( {\sin^{ - 1} (\frac{\updelta }{A})} \right)^{2} $$

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

To, C.N., Marzbani, H., Quốc, Đ.V., Simic, M., Fard, M., Jazar, R.N. (2019). Frequency Island and Nonlinear Vibrating Systems. In: De Pietro, G., Gallo, L., Howlett, R., Jain, L., Vlacic, L. (eds) Intelligent Interactive Multimedia Systems and Services. KES-IIMSS-18 2018. Smart Innovation, Systems and Technologies, vol 98. Springer, Cham. https://doi.org/10.1007/978-3-319-92231-7_15

Download citation

Publish with us

Policies and ethics