Skip to main content

A Collaborative Telemedicine Platform Focusing on Paranasal Sinus Segmentation

  • Conference paper
  • First Online:
Intelligent Interactive Multimedia Systems and Services (KES-IIMSS-18 2018)

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 98))

Abstract

Telemedicine is an important diagnostic auxiliary tool. This field has recently begun a period of explosive growth. In this paper, we combine mobile devices and image processing algorithms to develop a real-time collaborative image processing telemedicine platform for mobile devices. This C/S mode platform is based on C++, which is mainly implemented by VTK and ITK. In addition to implementing image transmission, 3D visualization and remote rendering, we focus on paranasal sinus CT and adopt automatic medical image segmentation function using the DRLSE algorithm. Besides, collaboration function ensures that users can process images in real time using mobile devices, which benefits communication between medical experts. Through testing, the platform is proved to be able to maintain stable bandwidth demand even in crowded network. According to the current research, this is the first platform to combine paranasal sinus CT image analysis with telemedicine. Therefore, our platform outperforms conventional teleradiology platform in functional completeness. Our platform helps radiologists and medical specialists to make correct diagnoses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perednia, D.A., Brown, N.A.: Teledermatology: one application of telemedicine. Bull. Med. Libr. Assoc. 83(1), 42–47 (1995)

    Google Scholar 

  2. Bernardes, P., et al.: KAMEDIN - teleconferencing and automatic image analysis for medical applications. In: Teixeira, J.C., Rix, J. (eds.) Modelling and Graphics in Science and Technology. Beiträge zur Graphischen Datenverarbeitung. Springer, Heidelberg (1996)

    Google Scholar 

  3. Moffitt, M.E., Richli, W.R., Carrasco, C.H., et al.: MDA-image: an environment of networked desktop computers for teleradiology/pathology. J. Med. Syst. 15, 111–115 (1991)

    Article  Google Scholar 

  4. Puech, P.A., Boussel, L., Belfkih, S., et al.: DicomWorks software for reviewing DICOM studies and promoting low-cost teleradiology. J. Digit Imaging 20, 122 (2007)

    Article  Google Scholar 

  5. Mohamed, A.S.A.: The use of teleradiology system linking a regional center of radiology to its district hospitals and clinics. In: ELemke, H.U., Inamura, K., Jaffe, C.C., Felix, R. (eds.) Computer Assisted Radiology/Computergestützte Radiologie, pp. 106–111. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  6. Carson, G.C., Fath, S.J., Van Meter, T.A., et al.: IMAGEnet: a wide area teleradiology network. In: Emergency Radiology. LNCS, vol. 1, pp. 32–3. Springer, Heidelberg (1994)

    Article  Google Scholar 

  7. Ivetic, D., Dragan, D.: Medical image on the go! J. Med. Syst. 35(4), 499–516 (2011)

    Article  Google Scholar 

  8. Park, J.B., Choi, H.J., Lee, J.H., Kang, B.S.: An assessment of the iPad 2 as a CT teleradiology tool using brain CT with subtle intracranial hemorrhage under conventional illumination. J. Digit. Imaging 26(4), 683–690 (2013)

    Article  Google Scholar 

  9. Pianykh, O.S.: DICOM and teleradiology digital imaging and communications in medicine (DICOM): a practical introduction and survival guide. J. Digit. Imaging, 281–317 (2012)

    Google Scholar 

  10. Zennaro, F., Grosso, D., Fascetta, R., Marini, M., Odoni, L., Di Carlo, V., Lazzerini, M., et al.: Teleradiology for remote consultation using iPad improves the use of health system human resources for paediatric fractures: prospective controlled study in a tertiary care hospital in Italy. BMC Health Serv. Res. 14(1), 327 (2014)

    Article  Google Scholar 

  11. Drnasin, I., Gogic, G., Tonkovic, S.: Interactive teleradiology. In: Dössel, O., Schlegel, W.C. (eds.) World Congress on Medical Physics and Biomedical Engineering, Munich, Germany. IFMBE Proceedings, vol. 25/5, pp. 290–294 . Springer, Heidelberg (2009)

    Google Scholar 

  12. Dreyer, K.J., Thrall, J.H., Hirschorn, D.S., Mehta, A.: PACS: a guide to the digital revolution. J. Med. Imaging Radiat. Oncol. 48, 103 (2004)

    Google Scholar 

  13. Gortzis, L.G.: Clinical teleradiology: collaboration over the web during interventional radiology procedures. In: Kumar, S., Krupinski, E.A. (eds.) Teleradiology. Springer, Heidelberg (2008)

    Google Scholar 

  14. Schmid, J., Nijdam, N., Han, S., Kim, J., Magnenat-Thalmann, N.: Interactive segmentation of volumetric medical images for collaborative telemedicine. In: Magnenat-Thalmann, N. (ed.) 3DPH 2009. LNCS, vol. 5903, pp. 13–24. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Rosenfeld, R.M., Piccirillo, J.F., Chandrasekhar, S.S., Brook, I., Ashok Kumar, K., Kramper, M., Orlandi, R.R., Palmer, J.N., Patel, Z.M., Peters, A., Walsh, S.A., Corrigan, M.D.: Clinical practice guideline (update): adult sinusitis executive summary. Otolaryngol. Head Neck Surg. Off. J. Am. Acad. Otolaryngol. Head Neck Surg. 152(4), 598–609 (2005)

    Article  Google Scholar 

  16. Schroeder, W.J., Avila, L.S., Hoffman, W.: Visualizing with VTK: a tutorial. IEEE Comput. Graphics Appl. 20(5), 20–27 (2000)

    Article  Google Scholar 

  17. Haines, R.F., Chuang, S.L.: The effects of video compression on acceptability of images for monitoring life sciences experiments. In: EEE Computer Society Data Compression Conference. NASA-TP-3239, A-92040, NAS 1.60:3239 Snowbird, UT, United States (1992)

    Google Scholar 

  18. Schmalstieg, D.: The remote rendering pipeline: managing geometry and bandwidth in distributed virtual environments. Ph.D. Vienna University of Technology, Vienna (1997)

    Google Scholar 

  19. Li, C., Cu, C., Gui, C., et al.: Level set evolution without reinitialization: a new variational formulation. In: Processings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 430–436, San Deigo, USA (2005)

    Google Scholar 

  20. Székely, A., Talanow, R., Bágyi, P.: Smartphones, tablets and mobile applications for radiology. Eur. J. Radiol. 82(5), 829–836 (2013)

    Article  Google Scholar 

  21. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1, 1:321–1:331 (1988)

    MATH  Google Scholar 

  22. Wang, Y., Hong, F., Wu, E.: The implementation and design of medical image process sub-system based on VTK library. Comput. Eng. Appl. 2003(08), 205–207 (2003)

    Google Scholar 

  23. Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MathSciNet  Google Scholar 

  24. Liu, Y., Li, C., Guo, S., Song, Y., Zhao, Y.: A novel level set method for segmentation of left and right ventricles from cardiac MR images. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, pp. 4719–4722 (2014)

    Google Scholar 

  25. Zabir, I., Paul, S., Rayhan, M.A., Sarker, T., Fattah, S.A., Shahnaz, C.: Automatic brain tumor detection and segmentation from multi-modal MRI images based on region growing and level set evolution. In: 2015 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), pp. 503–506, Dhaka, Bangladesh (2015)

    Google Scholar 

  26. Liang, R., Chen, X.J., Zhang, J.X.: Auto-Segmentation of lung in CT image series based on level set method with prior knowledge. In: 2017 3rd IEEE International Conference on Control Science and Systems Engineering (ICCSSE), Beijing, pp. 578–582 (2017)

    Google Scholar 

  27. Deng, Z., Chen, Y., Zhu, Z., Wang, Y., Wang, Y., Xu, M.: A collaborative and mobile platform for medical image analysis: a preliminary study. In: Chen, Y.W., Tanaka, S., Howlett, R., Jain, L. (eds.) Innovation in Medicine and Healthcare 2017. InMed 2017. Smart Innovation, Systems and Technologies, vol. 71, pp. 130–139. Springer, Cham (2018)

    Google Scholar 

  28. Deng, Z., et al.: Semi-automatic segmentation of paranasal sinuses from CT images using active contour with group similarity constraints. In: Chen, Y.W., Tanaka, S., Howlett, R., Jain, L. (eds.) Innovation in Medicine and Healthcare 2017. InMed 2017. Smart Innovation, Systems and Technologies, vol. 71, pp. 89–98. Springer, Cham (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinuo Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Li, Y., Deng, Z., Zhu, Z. (2019). A Collaborative Telemedicine Platform Focusing on Paranasal Sinus Segmentation. In: De Pietro, G., Gallo, L., Howlett, R., Jain, L., Vlacic, L. (eds) Intelligent Interactive Multimedia Systems and Services. KES-IIMSS-18 2018. Smart Innovation, Systems and Technologies, vol 98. Springer, Cham. https://doi.org/10.1007/978-3-319-92231-7_25

Download citation

Publish with us

Policies and ethics