Abstract
Sliding organs pose challenges in the registration of dynamic medical images because the smoothness criterion which is commonly assumed over the whole image domain does not apply at the sliding interfaces. In this case, image registration methods have to cope with local discontinuities in the correspondence map. We present a new registration methodology based on a multi-resolution transformation model which is defined as a directed acyclic graph. The graph’s edges connect consecutive resolution levels enabling to inhomogeneously pass displacements through to higher levels. Thus, they are well suited to cope with local discontinuities while aiming at smooth correspondence maps. We introduce three regularization terms which operate on the graph. A total variation term ensuring discontinuity preserving smoothness, a sparsity term on zero edge-weights to prevent trivial solutions and a term which prefers transformations which are explained in lower resolution levels. For an early proof of concept we analyze the registration performance of our method on synthetic 2D data and on a 2D slice of the POPI model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bajcsy, R., Kovačič, S.: Multiresolution elastic matching. Comput. Vis. Graph. Image Process. 46(1), 1–21 (1989)
Heinrich, M.P., Jenkinson, M., Brady, M., Schnabel, J.A.: MRF-based deformable registration and ventilation estimation of lung CT. IEEE Trans. Med. Imaging 32(7), 1239–1248 (2013)
Jud, C., Möri, N., Cattin, P.C.: Sparse kernel machines for discontinuous registration and nonstationary regularization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 9–16 (2016)
Jud, C., Sandkühler, R., Möri, N., Cattin, P.C.: Directional Averages for motion segmentation in discontinuity preserving image registration. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 249–256. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_29
Kiriyanthan, S., Fundana, K., Majeed, T., Cattin, P.C.: Discontinuity preserving image registration through motion segmentation: a primal-dual approach. Comput. Math. Methods Med. 2016, 20 (2016). Article ID 9504949
Lester, H., Arridge, S.R.: A survey of hierarchical non-linear medical image registration. Pattern Recogn. 32(1), 129–149 (1999)
Mendonca, M.W.: Multilevel Optimization: convergence theory, algorithms and application to derivative-free optimization. Ph.D. thesis, Phd thesis, Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium (2009)
Modersitzki, J.: Numerical Methods for Image Registration. Oxford University Press on Demand, Oxford (2004)
Pace, D.F., Aylward, S.R., Niethammer, M.: A locally adaptive regularization based on anisotropic diffusion for deformable image registration of sliding organs. IEEE Trans. Med. Imaging 32(11), 2114–2126 (2013)
Papież, B.W., Heinrich, M.P., Fehrenbach, J., Risser, L., Schnabel, J.A.: An implicit sliding-motion preserving regularisation via bilateral filtering for deformable image registration. Med. Image Anal. 18(8), 1299–1311 (2014)
Preston, J.S., Joshi, S., Whitaker, R.: Deformation estimation with automatic sliding boundary computation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 72–80. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46726-9_9
Risser, L., Vialard, F.X., Baluwala, H.Y., Schnabel, J.A.: Piecewise-diffeomorphic image registration: application to the motion estimation between 3D CT lung images with sliding conditions. Med. Image Anal. 17(2), 182–193 (2013)
Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)
Schmidt-Richberg, A., Werner, R., Handels, H., Ehrhardt, J.: Estimation of slipping organ motion by registration with direction-dependent regularization. Med. Image Anal. 16(1), 150–159 (2012)
von Siebenthal, M., Szekely, G., Gamper, U., Boesiger, P., Lomax, A., Cattin, P.: 4D MR imaging of respiratory organ motion and its variability. Phys. Med. Biol. 52(6), 1547 (2007)
Sotiras, A., Davatzikos, C., Paragios, N.: Deformable medical image registration: a survey. IEEE Trans. Med. Imaging 32(7), 1153–1190 (2013)
Sun, W., Niessen, W.J., van Stralen, M., Klein, S.: Simultaneous multiresolution strategies for nonrigid image registration. IEEE Trans. Image Process. 22(12), 4905–4917 (2013)
Thirion, J.P.: Image matching as a diffusion process: an analogy with Maxwell’s demons. Med. Image Anal. 2(3), 243–260 (1998)
Van Stralen, M., Pluim, J.P.: Optimal discrete multi-resolution deformable image registration. In: Proceedings of the Sixth IEEE International Conference on Symposium on Biomedical Imaging: From Nano to Macro, pp. 947–950. IEEE Press (2009)
Vandemeulebroucke, J., Sarrut, D., Clarysse, P., et al.: The POPI-model, a point-validated pixel-based breathing thorax model. In: XVth International Conference on the Use of Computers in Radiation Therapy (ICCR), vol. 2, pp. 195–199 (2007)
Viergever, M.A., Maintz, J.A., Klein, S., Murphy, K., Staring, M., Pluim, J.P.: A survey of medical image registration-under review. Med. Image Anal. 33, 140–144 (2016)
Vishnevskiy, V., Gass, T., Székely, G., Goksel, O.: Total variation regularization of displacements in parametric image registration. In: Yoshida, H., Näppi, J., Saini, S. (eds.) Abdominal Imaging. Computational and Clinical Applications. ABD-MICCAI 2014. Lecture Notes in Computer Science, vol. 8676. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13692-9_20
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Jud, C., Sandkühler, R., Cattin, P.C. (2018). An Inhomogeneous Multi-resolution Regularization Concept for Discontinuity Preserving Image Registration. In: Klein, S., Staring, M., Durrleman, S., Sommer, S. (eds) Biomedical Image Registration. WBIR 2018. Lecture Notes in Computer Science(), vol 10883. Springer, Cham. https://doi.org/10.1007/978-3-319-92258-4_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-92258-4_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-92257-7
Online ISBN: 978-3-319-92258-4
eBook Packages: Computer ScienceComputer Science (R0)