Skip to main content

An Inhomogeneous Multi-resolution Regularization Concept for Discontinuity Preserving Image Registration

  • Conference paper
  • First Online:
Biomedical Image Registration (WBIR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10883))

Included in the following conference series:

  • 571 Accesses

Abstract

Sliding organs pose challenges in the registration of dynamic medical images because the smoothness criterion which is commonly assumed over the whole image domain does not apply at the sliding interfaces. In this case, image registration methods have to cope with local discontinuities in the correspondence map. We present a new registration methodology based on a multi-resolution transformation model which is defined as a directed acyclic graph. The graph’s edges connect consecutive resolution levels enabling to inhomogeneously pass displacements through to higher levels. Thus, they are well suited to cope with local discontinuities while aiming at smooth correspondence maps. We introduce three regularization terms which operate on the graph. A total variation term ensuring discontinuity preserving smoothness, a sparsity term on zero edge-weights to prevent trivial solutions and a term which prefers transformations which are explained in lower resolution levels. For an early proof of concept we analyze the registration performance of our method on synthetic 2D data and on a 2D slice of the POPI model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bajcsy, R., Kovačič, S.: Multiresolution elastic matching. Comput. Vis. Graph. Image Process. 46(1), 1–21 (1989)

    Article  Google Scholar 

  2. Heinrich, M.P., Jenkinson, M., Brady, M., Schnabel, J.A.: MRF-based deformable registration and ventilation estimation of lung CT. IEEE Trans. Med. Imaging 32(7), 1239–1248 (2013)

    Article  Google Scholar 

  3. Jud, C., Möri, N., Cattin, P.C.: Sparse kernel machines for discontinuous registration and nonstationary regularization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 9–16 (2016)

    Google Scholar 

  4. Jud, C., Sandkühler, R., Möri, N., Cattin, P.C.: Directional Averages for motion segmentation in discontinuity preserving image registration. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 249–256. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_29

    Chapter  Google Scholar 

  5. Kiriyanthan, S., Fundana, K., Majeed, T., Cattin, P.C.: Discontinuity preserving image registration through motion segmentation: a primal-dual approach. Comput. Math. Methods Med. 2016, 20 (2016). Article ID 9504949

    Article  MathSciNet  Google Scholar 

  6. Lester, H., Arridge, S.R.: A survey of hierarchical non-linear medical image registration. Pattern Recogn. 32(1), 129–149 (1999)

    Article  Google Scholar 

  7. Mendonca, M.W.: Multilevel Optimization: convergence theory, algorithms and application to derivative-free optimization. Ph.D. thesis, Phd thesis, Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium (2009)

    Google Scholar 

  8. Modersitzki, J.: Numerical Methods for Image Registration. Oxford University Press on Demand, Oxford (2004)

    Google Scholar 

  9. Pace, D.F., Aylward, S.R., Niethammer, M.: A locally adaptive regularization based on anisotropic diffusion for deformable image registration of sliding organs. IEEE Trans. Med. Imaging 32(11), 2114–2126 (2013)

    Article  Google Scholar 

  10. Papież, B.W., Heinrich, M.P., Fehrenbach, J., Risser, L., Schnabel, J.A.: An implicit sliding-motion preserving regularisation via bilateral filtering for deformable image registration. Med. Image Anal. 18(8), 1299–1311 (2014)

    Article  Google Scholar 

  11. Preston, J.S., Joshi, S., Whitaker, R.: Deformation estimation with automatic sliding boundary computation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 72–80. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46726-9_9

    Chapter  Google Scholar 

  12. Risser, L., Vialard, F.X., Baluwala, H.Y., Schnabel, J.A.: Piecewise-diffeomorphic image registration: application to the motion estimation between 3D CT lung images with sliding conditions. Med. Image Anal. 17(2), 182–193 (2013)

    Article  Google Scholar 

  13. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)

    Article  Google Scholar 

  14. Schmidt-Richberg, A., Werner, R., Handels, H., Ehrhardt, J.: Estimation of slipping organ motion by registration with direction-dependent regularization. Med. Image Anal. 16(1), 150–159 (2012)

    Article  Google Scholar 

  15. von Siebenthal, M., Szekely, G., Gamper, U., Boesiger, P., Lomax, A., Cattin, P.: 4D MR imaging of respiratory organ motion and its variability. Phys. Med. Biol. 52(6), 1547 (2007)

    Article  Google Scholar 

  16. Sotiras, A., Davatzikos, C., Paragios, N.: Deformable medical image registration: a survey. IEEE Trans. Med. Imaging 32(7), 1153–1190 (2013)

    Article  Google Scholar 

  17. Sun, W., Niessen, W.J., van Stralen, M., Klein, S.: Simultaneous multiresolution strategies for nonrigid image registration. IEEE Trans. Image Process. 22(12), 4905–4917 (2013)

    Article  MathSciNet  Google Scholar 

  18. Thirion, J.P.: Image matching as a diffusion process: an analogy with Maxwell’s demons. Med. Image Anal. 2(3), 243–260 (1998)

    Article  Google Scholar 

  19. Van Stralen, M., Pluim, J.P.: Optimal discrete multi-resolution deformable image registration. In: Proceedings of the Sixth IEEE International Conference on Symposium on Biomedical Imaging: From Nano to Macro, pp. 947–950. IEEE Press (2009)

    Google Scholar 

  20. Vandemeulebroucke, J., Sarrut, D., Clarysse, P., et al.: The POPI-model, a point-validated pixel-based breathing thorax model. In: XVth International Conference on the Use of Computers in Radiation Therapy (ICCR), vol. 2, pp. 195–199 (2007)

    Google Scholar 

  21. Viergever, M.A., Maintz, J.A., Klein, S., Murphy, K., Staring, M., Pluim, J.P.: A survey of medical image registration-under review. Med. Image Anal. 33, 140–144 (2016)

    Article  Google Scholar 

  22. Vishnevskiy, V., Gass, T., Székely, G., Goksel, O.: Total variation regularization of displacements in parametric image registration. In: Yoshida, H., Näppi, J., Saini, S. (eds.) Abdominal Imaging. Computational and Clinical Applications. ABD-MICCAI 2014. Lecture Notes in Computer Science, vol. 8676. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13692-9_20

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Jud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jud, C., Sandkühler, R., Cattin, P.C. (2018). An Inhomogeneous Multi-resolution Regularization Concept for Discontinuity Preserving Image Registration. In: Klein, S., Staring, M., Durrleman, S., Sommer, S. (eds) Biomedical Image Registration. WBIR 2018. Lecture Notes in Computer Science(), vol 10883. Springer, Cham. https://doi.org/10.1007/978-3-319-92258-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92258-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92257-7

  • Online ISBN: 978-3-319-92258-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics