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Abstract. Tumor heterogeneity can be assessed quantitatively by ana-
lyzing dynamic contrast-enhanced imaging modalities potentially leading
to improvement in the diagnosis and treatment of cancer, for example
of the lung. However, the acquisition of standard lung sequences is often
compromised by irregular breathing motion artefacts, resulting in unsys-
tematic errors when estimating tissue perfusion parameters. In this work,
we illustrate implicit deformable image registration that integrates the
Demons algorithm using the local correlation coefficient as a similarity
measure, and locally adaptive regularization that enables incorporation
of both spatial sliding motions and irregular temporal motion patterns.
We also propose a practical numerical approximation of the regulariza-
tion model to improve both computational time and registration accu-
racy, which are important when analyzing long clinical sequences. Our
quantitative analysis of 4D lung Computed Tomography and Computed
Tomography Perfusion scans from clinical lung trial shows significant
improvement over state-of-the-art pairwise registration approaches.

1 Introduction

Dynamic imaging modalities such as Computed Tomography Perfusion (CTP)
or Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) have
attracted significant interest in quantitative oncological imaging since they have
the great potential for the assessment of tumor heterogeneity, leading, in turn, to
improvements in diagnosis and the formulation of personalized patient treatment
plan [5, 10]. These dynamic modalities have been widely used in clinical applica-
tions related to brain [7] or head and neck radiotherapy [4], but their application
has been rather limited in lung and abdominal radiotherapy, not least because
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of the deformations caused primarily by breathing [20]. The complexity of hu-
man lung motion and the irregular temporal motion patterns rule out generic
deformable image registration methods as they are unable to model accurately
the properties of the relevant tissues. Therefore, modeling and analyzing lung
and abdominal motion has been recognized as an important element of many
biomedical image analysis applications [16].

1.1 Related work

The standard approach to motion correction of dynamic sequences is to perform
state-of-the-art pairwise deformable registration algorithms [17] between the ref-
erence and the follow-up volumes from a sequence. While such an approach is
straightforward, it results in inverse inconsistency and transitivity errors [6] of
the estimated transformations due to accumulation of errors in the sequence.
Such errors are then propagated to any subsequent pharmacokinetic analysis.
Additionally, there is bias introduced in the registration results due to the se-
lection of a fixed reference volume, since choosing an outlying reference volume
may be disadvantageous as all registrations will need to estimate inadequate large
displacement fields. To reduce errors related to estimation of the displacement
fields, numerous methods have incorporated temporal smoothness constraints
[12, 1, 2, 18]. However, temporal regularization models do not solve the problem
of the fixed reference volume, and so temporal groupwise image registration has
been proposed [22, 13, 21]. Simultaneous registration of all images in a sequence
reduces the bias introduced by a fixed reference volume, while temporal regu-
larization preserves smoothness of the estimated displacement fields. Although
such an approach is more robust to outliers, temporal smoothness is implausible
for irregular motion artefacts, which are apparent for patients with lung cancer
or other co-morbidities.

Contributions. We explore groupwise deformable image registration [22] to
dynamic lung Computed Tomography (CT) as a method that is intrinsically
invariant to the selection of reference volume and irregularity of lung expira-
tion/inspiration motion pattern. In particular, we developed a groupwise de-
formable image registration derived from the LCC Demons [11] with adaptive
regularization using local spatial and temporal filtering of the estimated displace-
ment fields [14]. The main contributions of the manuscript are as follows: we
extend 3D guided image filtering to its 4D counterpart to enable efficient spatio-
temporal regularization of the estimated displacement fields from groupwise im-
age registration. Guided image filtering [9] is a computationally attractive, linear
image filtering technique, and here we used it to propagate spatio-temporal in-
formation from a so-called guidance image to the regularization. We present a
numerical approximation which significantly reduces the computational burden
whilst improving registration accuracy, which is important when dealing with
large 4D data set. The improved performance on a publicly available lung CT
data set [3] is quantitatively assessed. Finally, the robustness of the method on
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a challenging clinical application of CTP motion compensation for patients with
non-small cell lung cancer is demonstrated.

2 Methods

2.1 Classic Groupwise Deformable Image Registration

In the classic formulation [6], groupwise deformable image registration is defined
as a global energy minimization problem:

û = arg min
u

(ε(u) = Sim(I(u)) + αReg(u)) (1)

with respect to a set of displacement fields u describing geometrical correspon-
dences between a set of M input images I = [Im : Ω → R, Ω ∈ R3,m = 1, . . .M ].
If a reference image Iref for groupwise deformable image registration is explicitly
provided, the process of estimation of the set of displacement fields to such a ref-
erence image is called reference-based groupwise registration and the objective
function ε is defined as follows:

ε(u) =

M∑
m=1

Sim(Iref , Im(um)) + α

M∑
m=1

Reg(um) (2)

In the case when the reference image Iref is not provided, the estimation of the
set of the displacement fields from each image Im in the set I is performed with
respect to the unknown reference image, considering minimization the sum of
the similarity measure Sim between each pair of the input images as follows:

ε(u) =

M∑
m=1

M∑
n=1
n 6=m

Sim(Im(um), In(un)) + α

M∑
m=1

Reg(um) (3)

The objective function of the implicit groupwise deformable image registration
defined by Eq. (3) can be solved using a variety of methods. Because of its sim-
plicity and efficiency, we choose the Demons framework [19] to solve Eq. (3). For
the Demons framework, the optimization procedure alternates between minimiz-
ing the energy related to the similarity measure Sim and the regularization Reg
in an iterative manner. The contributions of this work will be described in detail
in the following sections.

2.2 Groupwise similarity measure

From the fact that the symmetric image registration can be seen as an implicit
groupwise image registration with only two input images, the minimization pro-
cess of groupwise registration (Eq. (3)) is similar to the symmetric registration
[11]. In the standard Demons registration, the displacement field is estimated by
the minimization of the sum of the squared differences (SSD) between the input
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images. In the case of the time scans acquired with contrast agent, the SSD
is not viable choice since it is not robust to the local intensity changes caused
by wash-in and wash-out of contrast. Here, we propose to replace SSD-based
groupwise registration to the local correlation coefficient (LCC) based counter-
part. LCC-Demons has already been used for symmetric brain MRI registration
due to the independence of any additive and multiplicative noise in the data
[11]. The LCC similarity measure between a pair of images I1 and I2 defined for
symmetric registration is defined in the following way:

LCC(I1(u1), I2(u2)) =
Ī1(u1)Ī2(u2)

(Ī1(u1))2(Ī2(u2))2
(4)

where Ī1 and Ī2 are the local mean image intensities for image I1 and I2, re-
spectively. Following the derivation in [11], the LCC symmetric update of the
displacement field for the Demons can be calculated with a closed form formula
as follows:

du12(x) =
−2forcelcc

(forcelcc + σ2
noise)

(5)

at any spatial position x in the image domain, σ2
noise is a noise estimator, and

forcelcc = G ∗
(
I1∇IT2
I1I2

− I2∇IT1
I1I2

+
I1∇IT1
I21

− I2∇IT2
I22

)
(6)

where G∗ is a Gaussian kernel for smoothing. Finally, the average update of
the displacement field for the groupwise registration is calculated using the log-
Euclidean mean for vector field du(x) given by:

dum(x) =
1

M − 1

M∑
n=1
n 6=m

(dumn(x)) (7)

2.3 Spatio-temporal filtering of displacement fields

Motion correction for intra-subject dynamic imaging of lungs is challenging due
to the complexity of motion to be estimated stemming from patient breathing
during acquisition. The standard regularization model of the Demons framework
realized by Gaussian smoothing of the estimated displacement field has been
shown to be inadequate to model respiratory motion. Here, we extend a previ-
ous approach [14], where spatially adaptive filtering of displacement field using
the guided image filtering technique was developed, and we present a generic
approach for 4D regularization. In our approach, the estimated displacement
field is additionally filtered by considering the temporal context of the guidance
information encoded in the dynamic imaging.

Following [15, 14], the initial displacement field uin is first spatially filtered
considering the context of the guidance information Ig as follows:

utmp(x) =
∑
y∈N

Wspatial (Ig,x,y) (uin(y) + dum(y)) (8)
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where N is the local spatial neighborhood (a box window of size rN ), and
Wspatial are the kernel weights for spatial filter. Similarly, the filtered displace-
ment field utmp is then temporally filtered again using the dynamic context of
the guidance information Ig(t) in the following way:

uout(x) =
∑
t∈T

Wtemporal (Ig,x, t) (utmp(x, t) + dum(x, t)) (9)

where T is the local temporal neighborhood (a box window of size rT ), and
Wtemporal are the kernel weights for temporal filter.

Our regularization method is composed of two main steps: spatial adaptive
filtering of the displacement field to enforce discontinuity preserving properties
at lung interfaces; and adaptive temporal filtering of the displacement field to
ensure capture of temporal (ir)regularities of the patient’s motion pattern. In
our framework, these two steps could not be combined in one step of filtering
the estimated displacement field, because the local spatial neighborhood and the
local temporal neighborhood have different units, and respective parameters rN
and rT need to be setup separately.

Regularization with subsampled guided image filter Since medical vol-
umes can easily be 512x512x120 or larger, a linear time (with respect of the
number of voxels) can be still considered to be computationally significant, par-
ticularly since the filtering procedure is repeated at every iteration of the pre-
sented deformable registration. Therefore, we adapt a speed-up strategy for fast
guided filters mentioned in [8] to improve performance of the presented filtering-
based regularization. Most of the computation time for the guided filters is spent
on the estimation of the filter coefficients, however the coefficients do not need
to be estimated from full-resolution volumes. Therefore, to estimate those coeffi-
cients, we subsample the input and guidance image by factor s, and perform all
computations related to filtering of the displacement on the subsampled volumes.
Then, the coefficients estimated from the subsampled volumes are upsampled to
the original size of the volumes, and then the final step of guided filtering is
performed using the original guidance image IG and the upsampled coefficients.
Due to the use of a subsampled image to estimate the filter coefficients, the com-
putational cost of filtering can be reduced approximately by s2 as only the final
step is performed on full size volume. Comparison of the influence of filtering of
the estimated displacement using the subsampled volumes is shown in Sec. 3.2.

3 Experiments

3.1 Data description

For quantitative evaluation of the proposed regularization method we use a pub-
licly available 4D CT data set [3]. The Dir-Lab data set consists of 10 consec-
utive respiratory cycle phase volumes with spatial resolution varying between
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Table 1. Results achieved by the proposed method with different value of the sub-
sampling factor s for 4D registration of CT lung from Dir-Lab data set. The method
with the subsampling factor s = 4 shows the lowest average Target Registration Error
(TRE) among all methods.

subsampling factor s
before s = 1 [14] s = 2 s = 3 s = 4 s = 5 s = 6

c1 3.89±2.9 0.95±0.9 1.08±1.1 0.88±1.0 0.90±1.0 0.86±1.0 0.86±1.0
c2 4.34±3.9 0.95±1.0 1.00±1.0 0.98±1.1 0.94±1.0 0.91±1.0 0.92±1.0
c3 6.94±4.1 1.06±1.1 1.09±1.1 1.03±1.1 1.06±1.1 1.08±1.1 1.27±1.2
c4 9.83±4.9 3.19±4.8 3.16±4.3 2.71±3.7 2.53±3.2 2.62±3.1 2.70±3.0
c5 7.48±5.5 1.40±1.5 1.44±1.6 1.33±1.5 1.31±1.5 1.41±1.5 1.51±1.5
c6 10.9±7.0 2.74±3.2 2.63±3.2 2.19±2.5 1.89±1.9 1.82±1.6 1.88±1.4
c7 11.0±7.4 1.69±1.6 1.67±1.6 1.52±1.4 1.52±1.4 1.74±1.6 1.91±1.4
c8 15.0±9.0 2.45±3.1 2.10±2.6 1.85±2.3 1.87±2.3 2.02±2.4 2.35±2.4
c9 7.92±4.0 1.56±1.0 1.31±1.2 1.33±1.1 1.37±1.1 1.55±1.2 1.79±1.2
c10 7.30±6.4 1.46±1.8 1.40±1.7 1.36±1.5 1.27±1.4 1.29±1.3 1.43±1.3

¯TRE 8.46±5.5 1.71±0.8 1.69±0.7 1.52±0.6 1.47±0.5 1.53±0.5 1.66±0.6

0.97×0.97×2.5 and 1.16×1.16× 2.5 mm3. To quantify registration accuracy, the
Target Registration Error (TRE) was calculated for the well-distributed set of
landmarks, which are provided with this data set (300 landmarks per case for
inhale and exhale volumes).

For the second experiment, the method was evaluated on CTP data from
a clinical trial (NCT02628080) acquired at the Churchill Hospital in Oxford
evaluating whether an investigational drug (atovaquone) alters tumour hypoxia.
The data reported here are for the pre-atovaquone scans. For the CTP patients
are imaged supine on a GE Discovery 710 PET/CT scanner with a 45s cine mode
CT using 120 kV and 60 mA. During this 70 mL contrast (Omnipaque 300) is
injected at 5 mL/s followed by 25 mL water at 5 mL/s. The patient is instructed
to hold their breath for as long as possible (at inspiration) and if necessary to
breathe out very slowly.

3.2 Results for publicly available 4D lung CT dataset

Table 1 shows the TRE based on 300 well-populated, manually annotated land-
marks for all ten cases included in the Dir-Lab data set [3]. The initial TRE is
8.46±5.5mm and the transformations estimated by the proposed method with
subsampling factor s = 4 reduces the TRE to 1.47±0.5mm, achieving the best
result in our comparison.

Visualization of the results for the presented method is shown in Fig. 1. Red
arrows depict regions of interest where the presented method with the subsam-
pling factor s = 4 outperformed the baseline method with the subsampling factor
s = 1.



Groupwise Deformable Image Registration 7

Fig. 1. Visualization of the image intensity differences (top) and 2D projection of the
Target Registration Error (bottom) before registration (a), and after performing the
proposed method with the subsampling factor (b) s = 1 [14], and (c) s = 4 for the
challenging case 6 from Dir-Lab. Color overlay is given for the coronal view of inhale
(green) and exhale (magenta) volumes. TRE is projected on the coronal plane and
denoted by the size and color of circles. A clear improvement after registration using
the presented method is visible (labeled by red arrows).

3.3 Results for lung tumor CTP

At the time of writing, we have analyzed 11 dynamic 4D-CTP scans of patients
who have a lung tumor. Registration quality was evaluated via the Correlation
Coefficient (CC), and for all data sets, and noticeable improvement was found
(avg. CC before = 0.96, and after = 0.99). Fig 2 shows an axial view of an
exemplar CTP and the time-cuts, which demonstrate visual improvement in
alignment over acquisition time of CTP volumes.

4 Discussion and Conclusions

In this paper, we have presented a new class of 4D regularization model based
on 4D guided image filtering, that can be easily incorporated into groupwise
deformable image registration. Furthermore, we have shown that the use of the
subsampled guided image to calculate the filter’s coefficient for the displacement
fields improves the registration accuracy while reduces computational cost of
registration. This is particularly important for long temporal acquisitions such as
DCE-MRI or CTP, which consists of several volumes. From a clinical perspective,
our registration framework compensates for misalignment between consecutive
CTP volumes caused by patient-specific breath-hold variability, resulting in the
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Fig. 2. Axial (left) view for reference volume with cyan and magenta pointers indicating
the locations of their corresponding time-cuts for CTP in the challenging case #AT010
before and after registration using the proposed method with the subsampling factor
(b) s = 4.

improved alignment of structure of interest in the lungs. We obtained a good
visual alignment of the CTP data, however actual registration errors measured
by the densely distributed landmarks was not assessed. Manual annotations of
temporal functional imaging e.g. Computed Tomography Perfusion is inevitably
labor-intensive. Furthermore, intensity changes caused by contrast uptake or the
low contrast of lung tissue in Computed Tomography Perfusion makes accurate
annotation even more challenging. For these reasons, we compared our method
using publicly available lung 4D CT data set [3]. We next aim to quantify the
impact of our method on estimation of tissue perfusion parameters.
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