Skip to main content

Fast Groupwise 4D Deformable Image Registration for Irregular Breathing Motion Estimation

  • Conference paper
  • First Online:
Biomedical Image Registration (WBIR 2018)

Abstract

Tumor heterogeneity can be assessed quantitatively by analyzing dynamic contrast-enhanced imaging modalities potentially leading to improvement in the diagnosis and treatment of cancer, for example of the lung. However, the acquisition of standard lung sequences is often compromised by irregular breathing motion artefacts, resulting in unsystematic errors when estimating tissue perfusion parameters. In this work, we illustrate implicit deformable image registration that integrates the Demons algorithm using the local correlation coefficient as a similarity measure, and locally adaptive regularization that enables incorporation of both spatial sliding motions and irregular temporal motion patterns. We also propose a practical numerical approximation of the regularization model to improve both computational time and registration accuracy, which are important when analyzing long clinical sequences. Our quantitative analysis of 4D lung Computed Tomography and Computed Tomography Perfusion scans from clinical lung trial shows significant improvement over state-of-the-art pairwise registration approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bai, W., Brady, M.: Regularized B-spline deformable registration for respiratory motion correction in PET images. Phys. Med. Biol. 54(9), 2719 (2009)

    Article  Google Scholar 

  2. Castillo, E., Castillo, R., Martinez, J., Shenoy, M., Guerrero, T.: Four-dimensional deformable image registration using trajectory modeling. Phys. Med. Biol. 55(1), 305 (2009)

    Article  Google Scholar 

  3. Castillo, R., Castillo, E., Guerra, R., Johnson, V., McPhail, T., Garg, A., Guerrero, T.: A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets. Phys. Med. Biol. 54, 1849–1870 (2009)

    Article  Google Scholar 

  4. Craciunescu, O.I., Yoo, D.S., Cleland, E., Muradyan, N., Carroll, M.D., MacFall, J.R., Barboriak, D.P., Brizel, D.M.: Dynamic contrast-enhanced MRI in head-and-neck cancer: the impact of region of interest selection on the intra-and interpatient variability of pharmacokinetic parameters. Int. J. Radiat. Oncol. Biol. Phys. 82(3), e345–e350 (2012)

    Article  Google Scholar 

  5. García-Figueiras, R., Goh, V.J., Padhani, A.R., Baleato-González, S., Garrido, M., León, L., Gómez-Caamaño, A.: CT perfusion in oncologic imaging: a useful tool? Am. J. Roentgenol. 200(1), 8–19 (2013)

    Article  Google Scholar 

  6. Geng, X., Christensen, G.E., Gu, H., Ross, T.J., Yang, Y.: Implicit reference-based group-wise image registration and its application to structural and functional MRI. Neuroimage 47(4), 1341–1351 (2009)

    Article  Google Scholar 

  7. Godenschweger, F., Kägebein, U., Stucht, D., Yarach, U., Sciarra, A., Yakupov, R., Lüsebrink, F., Schulze, P., Speck, O.: Motion correction in MRI of the brain. Phys. Med. Biol. 61(5), R32 (2016)

    Article  Google Scholar 

  8. He, K., Sun, J.: Fast guided filter. arXiv preprint arXiv:1505.00996 (2015)

  9. He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1397–1409 (2013)

    Article  Google Scholar 

  10. Koyama, H., Ohno, Y., Seki, S., Nishio, M., Yoshikawa, T., Matsumoto, S., Sugimura, K.: Magnetic resonance imaging for lung cancer. J. Thorac. Imaging 28(3), 138–150 (2013)

    Article  Google Scholar 

  11. Lorenzi, M., Ayache, N., Frisoni, G.B., Pennec, X., Alzheimer’s Disease Neuroimaging Initiative (ADNI): LCC-Demons: a robust and accurate symmetric diffeomorphic registration algorithm. Neuroimage 81, 470–483 (2013)

    Article  Google Scholar 

  12. McClelland, J.R., Blackall, J.M., Tarte, S., Chandler, A.C., Hughes, S., Ahmad, S., Landau, D.B., Hawkes, D.J.: A continuous 4D motion model from multiple respiratory cycles for use in lung radiotherapy. Med. Phys. 33(9), 3348–3358 (2006)

    Article  Google Scholar 

  13. Metz, C.T., Klein, S., Schaap, M., van Walsum, T., Niessen, W.J.: Nonrigid registration of dynamic medical imaging data using nD+ t B-splines and a groupwise optimization approach. Med. Image Anal. 15(2), 238–249 (2011)

    Article  Google Scholar 

  14. Papież, B.W., Franklin, J., Heinrich, M.P., Gleeson, F.V., Schnabel, J.A.: Liver motion estimation via locally adaptive over-segmentation regularization. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 427–434. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_51

    Chapter  Google Scholar 

  15. Papież, B.W., Heinrich, M.P., Fehrenbach, J., Risser, L., Schnabel, J.A.: An implicit sliding-motion preserving regularisation via bilateral filtering for deformable image registration. Med. Image Anal. 18(8), 1299–1311 (2014)

    Article  Google Scholar 

  16. Schnabel, J.A., Heinrich, M.P., Papież, B.W., Brady, J.M.: Advances and challenges in deformable image registration: from image fusion to complex motion modelling. Med. Image Anal. 33, 145–148 (2016)

    Article  Google Scholar 

  17. Sotiras, A., Davatzikos, C., Paragios, N.: Deformable medical image registration: a survey. IEEE Trans. Med. Imaging 32(7), 1153–1190 (2013)

    Article  Google Scholar 

  18. Vandemeulebroucke, J., Rit, S., Kybic, J., Clarysse, P., Sarrut, D.: Spatiotemporal motion estimation for respiratory-correlated imaging of the lungs. Med. Phys. 38(1), 166–178 (2011)

    Article  Google Scholar 

  19. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: efficient non-parametric image registration. Neuroimage 45, S61–S72 (2009)

    Article  Google Scholar 

  20. von Siebenthal, M., Szekely, G., Gamper, U., Boesiger, P., Lomax, A., Cattin, P.: 4D MR imaging of respiratory organ motion and its variability. Phys. Med. Biol. 52(6), 1547 (2007)

    Article  Google Scholar 

  21. Wu, G., Wang, Q., Shen, D., Alzheimer’s Disease NeuroImaging Initiative, et al.: Registration of longitudinal brain image sequences with implicit template and spatial-temporal heuristics. NeuroImage 59(1), 404–421 (2012)

    Article  Google Scholar 

  22. Yigitsoy, M., Wachinger, C., Navab, N.: Temporal groupwise registration for motion modeling. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 648–659. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22092-0_53

    Chapter  Google Scholar 

Download references

Acknowledgments

We acknowledge funding from the CRUK/EPSRC Cancer Imaging Centre in Oxford. The ATOM trial is sponsored by the University of Oxford and coordinated by the Oncology Clinical Trials Office. It is supported by the Howat Foundation, Oxford Cancer Imaging Centre, Cancer Research UK, National Institute of Health Research, Oxford Biomedical Research Centre and the ECMC. BWP acknowledges Oxford NIHR Biomedical Research Centre (Rutherford Fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartłomiej W. Papież .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Papież, B.W., McGowan, D.R., Skwarski, M., Higgins, G.S., Schnabel, J.A., Brady, M. (2018). Fast Groupwise 4D Deformable Image Registration for Irregular Breathing Motion Estimation. In: Klein, S., Staring, M., Durrleman, S., Sommer, S. (eds) Biomedical Image Registration. WBIR 2018. Lecture Notes in Computer Science(), vol 10883. Springer, Cham. https://doi.org/10.1007/978-3-319-92258-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92258-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92257-7

  • Online ISBN: 978-3-319-92258-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics