Abstract
Tumor heterogeneity can be assessed quantitatively by analyzing dynamic contrast-enhanced imaging modalities potentially leading to improvement in the diagnosis and treatment of cancer, for example of the lung. However, the acquisition of standard lung sequences is often compromised by irregular breathing motion artefacts, resulting in unsystematic errors when estimating tissue perfusion parameters. In this work, we illustrate implicit deformable image registration that integrates the Demons algorithm using the local correlation coefficient as a similarity measure, and locally adaptive regularization that enables incorporation of both spatial sliding motions and irregular temporal motion patterns. We also propose a practical numerical approximation of the regularization model to improve both computational time and registration accuracy, which are important when analyzing long clinical sequences. Our quantitative analysis of 4D lung Computed Tomography and Computed Tomography Perfusion scans from clinical lung trial shows significant improvement over state-of-the-art pairwise registration approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bai, W., Brady, M.: Regularized B-spline deformable registration for respiratory motion correction in PET images. Phys. Med. Biol. 54(9), 2719 (2009)
Castillo, E., Castillo, R., Martinez, J., Shenoy, M., Guerrero, T.: Four-dimensional deformable image registration using trajectory modeling. Phys. Med. Biol. 55(1), 305 (2009)
Castillo, R., Castillo, E., Guerra, R., Johnson, V., McPhail, T., Garg, A., Guerrero, T.: A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets. Phys. Med. Biol. 54, 1849–1870 (2009)
Craciunescu, O.I., Yoo, D.S., Cleland, E., Muradyan, N., Carroll, M.D., MacFall, J.R., Barboriak, D.P., Brizel, D.M.: Dynamic contrast-enhanced MRI in head-and-neck cancer: the impact of region of interest selection on the intra-and interpatient variability of pharmacokinetic parameters. Int. J. Radiat. Oncol. Biol. Phys. 82(3), e345–e350 (2012)
García-Figueiras, R., Goh, V.J., Padhani, A.R., Baleato-González, S., Garrido, M., León, L., Gómez-Caamaño, A.: CT perfusion in oncologic imaging: a useful tool? Am. J. Roentgenol. 200(1), 8–19 (2013)
Geng, X., Christensen, G.E., Gu, H., Ross, T.J., Yang, Y.: Implicit reference-based group-wise image registration and its application to structural and functional MRI. Neuroimage 47(4), 1341–1351 (2009)
Godenschweger, F., Kägebein, U., Stucht, D., Yarach, U., Sciarra, A., Yakupov, R., Lüsebrink, F., Schulze, P., Speck, O.: Motion correction in MRI of the brain. Phys. Med. Biol. 61(5), R32 (2016)
He, K., Sun, J.: Fast guided filter. arXiv preprint arXiv:1505.00996 (2015)
He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1397–1409 (2013)
Koyama, H., Ohno, Y., Seki, S., Nishio, M., Yoshikawa, T., Matsumoto, S., Sugimura, K.: Magnetic resonance imaging for lung cancer. J. Thorac. Imaging 28(3), 138–150 (2013)
Lorenzi, M., Ayache, N., Frisoni, G.B., Pennec, X., Alzheimer’s Disease Neuroimaging Initiative (ADNI): LCC-Demons: a robust and accurate symmetric diffeomorphic registration algorithm. Neuroimage 81, 470–483 (2013)
McClelland, J.R., Blackall, J.M., Tarte, S., Chandler, A.C., Hughes, S., Ahmad, S., Landau, D.B., Hawkes, D.J.: A continuous 4D motion model from multiple respiratory cycles for use in lung radiotherapy. Med. Phys. 33(9), 3348–3358 (2006)
Metz, C.T., Klein, S., Schaap, M., van Walsum, T., Niessen, W.J.: Nonrigid registration of dynamic medical imaging data using nD+ t B-splines and a groupwise optimization approach. Med. Image Anal. 15(2), 238–249 (2011)
Papież, B.W., Franklin, J., Heinrich, M.P., Gleeson, F.V., Schnabel, J.A.: Liver motion estimation via locally adaptive over-segmentation regularization. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 427–434. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_51
Papież, B.W., Heinrich, M.P., Fehrenbach, J., Risser, L., Schnabel, J.A.: An implicit sliding-motion preserving regularisation via bilateral filtering for deformable image registration. Med. Image Anal. 18(8), 1299–1311 (2014)
Schnabel, J.A., Heinrich, M.P., Papież, B.W., Brady, J.M.: Advances and challenges in deformable image registration: from image fusion to complex motion modelling. Med. Image Anal. 33, 145–148 (2016)
Sotiras, A., Davatzikos, C., Paragios, N.: Deformable medical image registration: a survey. IEEE Trans. Med. Imaging 32(7), 1153–1190 (2013)
Vandemeulebroucke, J., Rit, S., Kybic, J., Clarysse, P., Sarrut, D.: Spatiotemporal motion estimation for respiratory-correlated imaging of the lungs. Med. Phys. 38(1), 166–178 (2011)
Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: efficient non-parametric image registration. Neuroimage 45, S61–S72 (2009)
von Siebenthal, M., Szekely, G., Gamper, U., Boesiger, P., Lomax, A., Cattin, P.: 4D MR imaging of respiratory organ motion and its variability. Phys. Med. Biol. 52(6), 1547 (2007)
Wu, G., Wang, Q., Shen, D., Alzheimer’s Disease NeuroImaging Initiative, et al.: Registration of longitudinal brain image sequences with implicit template and spatial-temporal heuristics. NeuroImage 59(1), 404–421 (2012)
Yigitsoy, M., Wachinger, C., Navab, N.: Temporal groupwise registration for motion modeling. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 648–659. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22092-0_53
Acknowledgments
We acknowledge funding from the CRUK/EPSRC Cancer Imaging Centre in Oxford. The ATOM trial is sponsored by the University of Oxford and coordinated by the Oncology Clinical Trials Office. It is supported by the Howat Foundation, Oxford Cancer Imaging Centre, Cancer Research UK, National Institute of Health Research, Oxford Biomedical Research Centre and the ECMC. BWP acknowledges Oxford NIHR Biomedical Research Centre (Rutherford Fund).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Papież, B.W., McGowan, D.R., Skwarski, M., Higgins, G.S., Schnabel, J.A., Brady, M. (2018). Fast Groupwise 4D Deformable Image Registration for Irregular Breathing Motion Estimation. In: Klein, S., Staring, M., Durrleman, S., Sommer, S. (eds) Biomedical Image Registration. WBIR 2018. Lecture Notes in Computer Science(), vol 10883. Springer, Cham. https://doi.org/10.1007/978-3-319-92258-4_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-92258-4_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-92257-7
Online ISBN: 978-3-319-92258-4
eBook Packages: Computer ScienceComputer Science (R0)