Abstract
We present a workflow for processing real-time cardiac MR (RT-CMR) scans for segmenting the left ventricle (LV) on short-axis slices (SAX). Our method is based on image registration, where the LV endocardium and epicardium are segmented by propagating a reference contour over all the frames of the RT-CMR SAX scans. Our method was evaluated on 19 subjects, the accuracy of the automatic LV endocardium and epicardium segmentation was compared to those defined manually. The proposed method obtained a dice similarity coefficient (DSC) of 0.94 and a mean surface-to-surface distance (MSD) measure of 0.89 ± 0.53 mm. Additionally, a number of automatically obtained clinical measures were compared to ground truth values. On average we obtained a Pearson’s correlation coefficient (R) of 0.94 (0.99–0.74).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Manning, W.J., Pennell, D.J.: Cardiovascular Magnetic Resonance. Elsevier Health Sciences, Philadelphia (2010)
Zhang, S., Uecker, M., Voit, D., Merboldt, K.D., Frahm, J.: Real-time cardiovascular magnetic resonance at high temporal resolution: radial FLASH with nonlinear inverse reconstruction. J. Cardiovas. Magn. Reson. 12(1), 39 (2010)
Uecker, M., Zhang, S., Voit, D., Karaus, A., Merboldt, K.D., Frahm, J.: Real-time MRI at a resolution of 20 ms. NMR in Biomed. 23(8), 986–994 (2010)
Sotiras, A., Davatzikos, C., Paragios, N.: Deformable medical image registration: a survey. IEEE Trans. Med. Imaging 32(7), 1153–1190 (2013)
Metz, C., Klein, S., Schaap, M., van Walsum, T., Niessen, W.J.: Nonrigid registration of dynamic medical imaging data using nD+t B-splines and a groupwise optimization approach. Med. Image Anal. 15(2), 238–249 (2011)
Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.: Elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29(1), 196–205 (2010)
Shahzad, R., Tao, Q., Dzyubachyk, O., Staring, M., Lelieveldt, B.P., van der Geest, R.J.: Fully-automatic left ventricular segmentation from long-axis cardiac cine MR scans. Med. Image Anal. 39, 44–55 (2017)
Klein, S., Pluim, J.P., Staring, M., Viergever, M.A.: Adaptive stochastic gradient descent optimisation for image registration. Int. J. Comput. Vis. 81(3), 227 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Shahzad, R., Fasshauer, M., Lelieveldt, B.P.F., Lotz, J., van der Geest, R. (2018). Semi-automated Processing of Real-Time CMR Scans for Left Ventricle Segmentation. In: Klein, S., Staring, M., Durrleman, S., Sommer, S. (eds) Biomedical Image Registration. WBIR 2018. Lecture Notes in Computer Science(), vol 10883. Springer, Cham. https://doi.org/10.1007/978-3-319-92258-4_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-92258-4_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-92257-7
Online ISBN: 978-3-319-92258-4
eBook Packages: Computer ScienceComputer Science (R0)