Skip to main content

Dependable Wireless Communication and Localization in the Internet of Things

  • Chapter
  • First Online:
Mission-Oriented Sensor Networks and Systems: Art and Science

Abstract

Wireless technologies suffer from physical and man-made impairments (e.g., multipath propagation and interference from competing transmissions, as well as from the effect of temperature variations and other environmental properties): this impairs the reliability, timeliness, and availability of IoT systems. At the same time, we see a wave of new safety-critical IoT applications that require performance guarantees. This chapter surveys methods to increase the dependability of the IoT, specifically focusing, first, on increasing the frequency bandwidth from narrowband, over wideband, towards ultra-wideband to better handle multipath effects and interference. Second, the chapter focuses on increasing the adaptability such that a networked system can compensate disturbances also dynamically, eventually striving for cognitive abilities. A distinguishing feature of this chapter is its comprehensive treatment of dependability issues across multiple layers, from signal processing, over microwave engineering, and to networking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The AWGN is characterized by a flat double-sided power spectral density of \(N_0/2\).

  2. 2.

    The RF operating frequency of the transceiver is switched between a fixed set of frequency values using a swept LO.

  3. 3.

    Second layer in the OSI reference model.

  4. 4.

    BLE is marketed as Bluetooth Smart and was originally introduced as Wibree by Nokia. It is merged by the Bluetooth special interest group (SIG) into the Bluetooth Core Specification v4.0.

References

  1. Avižienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of dependable and secure computing. IEEE Trans. Dependable Secur Comput. 1(1), 11–33 (2004)

    Article  Google Scholar 

  2. Boano, C.A., Römer, K., Bloem, R., Witrisal, K., Baunach, M., Horn, M.: Dependability for the internet of things—from dependable networking in harsh environments to a holistic view on dependability. e&i Elektrotechnik und Informationstechnik 133(7) (2016)

    Google Scholar 

  3. You, C.-W., Wei, C.-C., Chen, Y.-L., Chu, H.-H., Chen, M.-S.: Using mobile phones to monitor shopping time at physical stores. IEEE Pervasive Comput. 10(2), 37–43 (2011)

    Article  Google Scholar 

  4. Martella, C., Miraglia, A., Cattani, M., van Steen, M.: Leveraging proximity sensing to mine the behavior of museum visitors. In: Proceedings of the IEEE International Conference on Pervasive Computing and Communications (PerCom) (2016)

    Google Scholar 

  5. Langendoen, K.: Medium access control in wireless sensor networks, vol. 2, pp. 535–560 (2008)

    Google Scholar 

  6. Molisch, A., Wireless Communications. Wiley (2011)

    Google Scholar 

  7. Rappaport, T.S., Wireless Communications: Principles and Practice. Prentice Hall (2001)

    Google Scholar 

  8. Parsons, J.D.: The Mobile Radio Propagation Channel. Wiley (2000)

    Google Scholar 

  9. Gallager, R.G.: Stochastic Processes: Theory for Applications. Cambridge University Press (2013)

    Google Scholar 

  10. Molisch, A.F.: Ultra-wide-band propagation channels. Proc. IEEE 97(2), 353–371 (2009)

    Article  Google Scholar 

  11. Ultrawideband propagation channels-theory, measurement, and modeling. IEEE Trans. Veh. Technol. 54(5), 1528–1545 (2005)

    Article  Google Scholar 

  12. Proakis, J.G., Salehi, M., Zhou, N., Li, X.: Communication Systems Engineering, vol. 94. Prentice Hall, New Jersey (1994)

    Google Scholar 

  13. Barry, J.R., Lee, E.A., Messerschmitt, D.G.: Digital Communication. Springer Science & Business Media (2004)

    Google Scholar 

  14. Simon, M.K., Alouini, M.-S.: Digital Communication Over Fading Channels, vol. 95. Wiley (2005)

    Google Scholar 

  15. Alamouti, S.M.: A simple transmit diversity technique for wireless communications. IEEE J. Sel. Areas Commun. 16(8), 1451–1458 (1998)

    Article  Google Scholar 

  16. Cheun, K.: Performance of direct-sequence spread-spectrum rake receivers with random spreading sequences. IEEE Trans. Commun. 45(9), 1130–1143 (1997)

    Article  Google Scholar 

  17. Nee, R.V., Prasad, R.: OFDM for Wireless Multimedia Communications. Artech House, Inc. (2000)

    Google Scholar 

  18. Gast, M.: 802.11 Wireless Networks: The Definitive Guide. O’Reilly Media, Inc. (2005)

    Google Scholar 

  19. Dahlman, E., Parkvall, S., Skold, J.: 4G: LTE/LTE-Advanced for Mobile Broadband. Academic Press (2013)

    Google Scholar 

  20. Bohge, M., et al.: Dynamic resource allocation in ofdm systems: an overview of cross-layer optimization principles and techniques. IEEE Netw. 21(1), 53–59 (2007)

    Article  Google Scholar 

  21. Hanzo, L.L., et al.: MIMO-OFDM for LTE, WiFi and WiMAX: Coherent Versus Non-coherent and Cooperative Turbo Transceivers, vol. 9. Wiley (2010)

    Google Scholar 

  22. Malik, W.Q., Allen, B., Edwards, D.J.: Bandwidth-dependent modelling of smallscale fade depth in wireless channels. IET Microwaves Antennas Propag. 2(6), 519–528 (2008)

    Article  Google Scholar 

  23. Romme, J., Kull, B.: On the relation between bandwidth and robustness of indoor UWB communication. In: 2003 IEEE Conference on Ultra Wideband Systems and Technologies (2003)

    Google Scholar 

  24. Scholtz, R.: Multiple access with time-hopping impulse modulation. In: 1993 Military Communications Conference, MILCOM ’93, Conference Record Communication on the Move. IEEE (1993)

    Google Scholar 

  25. Win, M.Z., Scholtz, R.A.: Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications. IEEE Trans. Commun. 48(4), 679–689 (2000)

    Article  Google Scholar 

  26. Rushforth, C.: Transmitted-reference techniques for random or unknown channels. IEEE Trans. Inf. Theory 10(1), 39–42 (1964)

    Article  Google Scholar 

  27. Witrisal, K., Leus, G., Janssen, G.J., Pausini, M., Trösch, F., Zasowski, T., Romme, J.: Noncoherent ultra-wideband systems,. IEEE Signal Proc. Mag. 26(4) (2009)

    Article  Google Scholar 

  28. Chen, Y., Wang, B., Han, Y., Lai, H.Q., Safar, Z., Liu, K.J.R.: Why time reversal for future 5G wireless? [perspectives]. IEEE Signal Proc. Mag. 33(2), 17–26 (2016)

    Article  Google Scholar 

  29. Mitola, J.: The software radio architecture. IEEE Commun. Mag. 33(5), 26–38 (1995)

    Article  Google Scholar 

  30. Haykin, S.: Cognitive radio: brain-empowered wireless communications. IEEE J. Sel. Areas Commun. 23(2), 201–220 (2005)

    Article  Google Scholar 

  31. Haykin, S.: Cognitive Dynamic Systems: Perception-action Cycle, Radar and Radio. Cambridge University Press (2012)

    Google Scholar 

  32. Mok, E., Retscher, G.: Location determination using WiFi fingerprinting versus WiFi trilateration. J. Locat. Based Serv. 1(2), 145–159 (2007)

    Article  Google Scholar 

  33. Meissner, P.: Multipath-Assisted Indoor Positioning. Ph.D. Dissertation, Graz University of Technology (2014)

    Google Scholar 

  34. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: part i. IEEE Robot. Autom. Mag. 13(2), 99–110 (2006)

    Article  Google Scholar 

  35. Thrun, S., Leonard, J.J.: Simultaneous localization and mapping. In: Springer Handbook of Robotics. Springer, pp. 871–889 (2008)

    Google Scholar 

  36. Leitinger, E., Meissner, P., Lafer, M., Witrisal, K.: Simultaneous localization and mapping using multipath channel information. In: Proceedings of the IEEE ICC-15 (2015)

    Google Scholar 

  37. Leitinger, E.: Cognitive indoor positioning and tracking using multipath channel information. Ph.D. Dissertation, Graz University of Technology (2016)

    Google Scholar 

  38. Kay, S.M.: Fundamentals of Statistical Signal Processing, Estimation Theory, vol. I, Prentice Hall (1993)

    Google Scholar 

  39. Witrisal, K., Leitinger, E., Hinteregger, S., Meissner, P.: Bandwidth scaling and diversity gain for ranging and positioning in dense multipath channels. IEEE Wirel. Commun. Lett. PP(99), 1–1 (2016)

    Google Scholar 

  40. Witrisal, K., et al.: High-accuracy localization for assisted living: 5G systems will turn multipath channels from foe to friend. IEEE Signal Proc. Mag. 33(2), 59–70 (2016)

    Article  Google Scholar 

  41. Rath, M., et al.: Multipath-assisted indoor positioning enabled by directional UWB sector antennas. In: IEEE International Workshop on Signal Processing Advances in Wireless Communications, SPAWC (2017)

    Google Scholar 

  42. Cruz, P., Carvalho, N.B., Remley, K.A.: Designing and testing software-defined radios. IEEE Microw. Mag. 11(4), 83–94 (2010)

    Article  Google Scholar 

  43. Pozar, D.: Microwave and RF Wireless Systems. Wiley, New York (2001)

    Google Scholar 

  44. Balasubramanian, S., Boumaiza, S., Sarbishaei, H., Quach, T., Orlando, P., et al.: Ultimate transmission. IEEE Microwav. Mag. 13(1), 64–82 (2012)

    Article  Google Scholar 

  45. Prata, A., Oliveira, A.S.R., Carvalho, N.B.: An agile digital radio system for UHF white spaces. IEEE Microwav. Mag. 15(1), 92–97 (2014)

    Article  Google Scholar 

  46. Kitsunezuka, M., Kunihiro, K., Fukaishi, M.: Efficient use of the spectrum. IEEE Microw. Mag. 13(1), 55–63 (2012)

    Article  Google Scholar 

  47. Gómez-García, R., et al.: Filling the spectral holes: novel/future wireless communications and radar receiver architectures. IEEE Microw. Mag. 15(2), 45–56 (2014)

    Article  Google Scholar 

  48. Kloc, M., et al.: Let’s make them cognitive: cognitive radio technology applied to professional wireless microphone systems. IEEE Microw. Mag. 17, 70–78 (2016)

    Article  Google Scholar 

  49. Baylis, C., Fellows, M., Cohen, L., II, R.J.M.: Solving the spectrum crisis: intelligent, reconfigurable microwave transmitter amplifiers for cognitive radar. IEEE Microw. Mag. 15(5), 94–107 (2014)

    Article  Google Scholar 

  50. Maurer, L., Stuhlberger, R., Wicpalek, C., Haberpeuntner, G., Hueber, G.: Be flexible. IEEE Microw. Mag. 9(2), 83–95 (2008)

    Article  Google Scholar 

  51. Rofougaran, A.R., Rofougaran, M., Behzad, A.: Radios for next-generation wireless networks. IEEE Microw. Mag. 6(1), 38–43 (2005)

    Article  Google Scholar 

  52. Chastellain, F., Botteron, C., Farine, P.A.: Looking inside modern receivers. IEEE Microw. Mag. 12(2), 87–98 (2011)

    Article  Google Scholar 

  53. Wang, H., Dang, V., Liu, Q., Ren, L., Ren, L., et al.: An elegant solution: an alternative ultra-wideband transceiver based on stepped-frequency continuous-wave operation and compressive sensing. IEEE Microw. Mag. 17(7), 53–63 (2016)

    Article  Google Scholar 

  54. Nader, C.: et al. Wideband radio frequency measurements: from instrumentation to sampling theory. IEEE Microw. Mag. 14(2), 85–98 (2013)

    Article  Google Scholar 

  55. Mitola, J., Maguire, G.Q.: Cognitive radio: making software radios more personal. IEEE Personal Commun. 6(4), 13–18 (1999)

    Article  Google Scholar 

  56. Levy, R., Cohn, S.: A history of microwave filter research, design and development. IEEE Trans. Microw. Theory Tech. 32(9), 1055–1067 (1984)

    Article  Google Scholar 

  57. Hunter, I.C., Billonet, L., Jarry, B., Guillon, P.: Microwave filters—applications and technology. IEEE Trans. Microw. Theory Tech. 50(3), 794–805 (2002)

    Article  Google Scholar 

  58. Levy, R., Snyder, R., Matthaei, G.: Design of microwave filters. IEEE Trans. Microw. Theory Tech. 50(3), 783–793 (2002)

    Article  Google Scholar 

  59. Snyder, R.: Practical aspects of microwave filter development. IEEE Microw. Mag. 8(2), 42–54 (2007)

    Article  Google Scholar 

  60. Hong, J.-S.: Microstrip Filters for RF/Microwave Applications. Wiley (2011)

    Google Scholar 

  61. Bianchi, G., Sorrentino, R.: Electronic Filter Design and Simulation. McGraw-Hill (2007)

    Google Scholar 

  62. Matthaei, G., Jones, E., Young, L.: Microwave Filters, Impedance-Matching Networks, and Coupling Structures. Artech Microwave Library, North Bergen, NJ (1964)

    Google Scholar 

  63. Cameron, R., Kudsia, C., Mansour, R.R.: Microwave filters for communication systems. Wiley-Interscience, Hoboken, N.J. (2007)

    Google Scholar 

  64. Tazzoli, A., Peretti, V., Gaddi, R.: et al. Reliability issues in rf-mems switches submitted to cycling and esd test. In: 2006 IEEE International Reliability Physics Symposium Proceedings (2006)

    Google Scholar 

  65. Wong, P.W., Hunter, I.C.: Electronically reconfigurable microwave bandpass filter. IEEE Trans. Microw. Theory Tech. 57(12), 3070–3079 (2009)

    Google Scholar 

  66. Wu, Z., Shim, Y., Rais-Zadeh, M.: Miniaturized UWB filters integrated with tunable notch filters using a silicon-based integrated passive device technology. IEEE Trans. Microw. Theory Tech. 60(3), 518–527 (2012)

    Article  Google Scholar 

  67. Pelliccia, L.: et al.: Compact ultra-wideband planar filter with RF-MEMS-based tunable notched band. In: 2012 Asia Pacific Microwave Conference Proceedings (2012)

    Google Scholar 

  68. Kraus, J.D., Marhefka, R.J.: Antennas for all Applications, 1st edn. McGraw-Hill (2002)

    Google Scholar 

  69. Chen, Z.N.: UWB antennas: design and application. In: 6th International Conference on Information, Communications & Signal Processing, vol. 2007, pp. 1–5. IEEE (2007)

    Google Scholar 

  70. Haider, N., Caratelli, D., Yarovoy, A.G.: Recent developments in reconfigurable and multiband antenna technology. Int. J. Antennas Propog. 1–14 (2013)

    Article  Google Scholar 

  71. Balanis, C.A.: Antenna Theory: Analysis and Design (2016)

    Google Scholar 

  72. Gross, F.B.: Frontiers in Antennas, 1st edn. McGraw-Hill (2011)

    Google Scholar 

  73. Morishita, H., et al.: Design concept of antennas for small mobile terminals and the future perspective. IEEE Antennas Propag. Mag. 44(5), 30–43 (2002)

    Article  MathSciNet  Google Scholar 

  74. Yang, T., Davis, W.A., Stutzman, W.L.: Fundamental-limit perspectives on ultrawideband antennas. Radio Sci. 44(01), 1–8 (2009)

    Article  Google Scholar 

  75. Harrington, R.F.: Effect of antenna size on gain, bandwidth, and efficiency. J. Res. Nat. Bur. Stand 64(1), 1–12 (1960)

    MATH  Google Scholar 

  76. Chu, L.J.: Physical limitations of omni-directional antennas. J. Appl. Phys. 19(12), 1163–1175 (1948)

    Article  Google Scholar 

  77. McLean, J.S.: A re-examination of the fundamental limits on the radiation Q of electrically small antennas. IEEE Trans. Antennas Propag. 44(5), 672 (1996)

    Article  Google Scholar 

  78. Bhatnagar, M.: Broadband design of microstrip antennas: recent trends and developments. In: International Conference on Recent Advances in Microwave Theory and Applications (2008)

    Google Scholar 

  79. Adamiuk, G., Zwick, T., Wiesbeck, W.: UWB antennas for communication systems. Proc. IEEE 100(7), 2308–2321 (2012)

    Article  Google Scholar 

  80. Sipal, V., Allen, B., Edwards, D., Honary, B.: Twenty years of ultrawideband: opportunities and challenges. IET Commun. 6(10), 1147 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  81. Jusoh, M., et al.: A MIMO antenna design challenges for UWB application. Prog. Electromagnet. Res. B 36, 357–371 (2012)

    Article  Google Scholar 

  82. Adamiuk, G., Wiesbeck, W., Zwick, T.: Multi-mode antenna feed for ultra wideband technology, In: IEEE Radio Wirel. Symp. vol. 2009, pp. 578–581 (2009)

    Google Scholar 

  83. Tang, M.C., Wang, H., Deng, T., Ziolkowski, R.W.: Compact planar ultrawideband antennas with continuously tunable, independent band-notched filters. IEEE Trans. Antennas Propag. 64(8), 3292–3301 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  84. Tang, M.C., Shi, T., Ziolkowski, R.W.: Planar ultrawideband antennas with improved realized gain performance. IEEE Trans. Antennas Propag. 64, 61–69 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  85. Grosswindhager, B., et al.: Poster: Switchable directional antenna system for UWB-based internet of things applications. In: Proceedings of the 14th EWSN Conference (2017)

    Google Scholar 

  86. Bhatia, D., Kumar, D.M., Sharma, A.: A beam scanning UWB antenna system for wireless applications. Intern. J. Electron. Eng. 3(1) (2011)

    Google Scholar 

  87. Mottola, L., et al.: Electronically-switched directional antennas for wireless sensor networks: a full-stack evaluation. In: IEEE International Conference on Sensing, Communication and Networking (2013)

    Google Scholar 

  88. Catarinucci, L., Guglielmi, S., Patrono, L., Tarricone, L.: Switched-beam antenna for wireless sensor network nodes. Prog. Electrom. Res. C 39, 193–207 (2013)

    Article  Google Scholar 

  89. Demirkol, I., Ersoy, C., Alagoz, F., et al.: MAC protocols for wireless sensor networks: a survey. IEEE Commun. Mag. 44(4), 115–121 (2006)

    Article  Google Scholar 

  90. Huang, P., Xiao, L., Soltani, S., et al.: The evolution of MAC protocols in wireless sensor networks: a survey. IEEE Commun. Surv. Tutor. 15(1), 101–120 (2013)

    Article  Google Scholar 

  91. Ye, W., Heidemann, J., Estrin, D.: An energy-efficient MAC protocol for wireless sensor networks, In: Joint Conference of the IEEE Computer and Communications Societies (2002)

    Google Scholar 

  92. Van Dam, T., Langendoen, K.: An adaptive energy-efficient MAC protocol for wireless sensor networks. In: Proceedings of the 1st SenSys Conference (2003)

    Google Scholar 

  93. Buettner, M., Yee, G.V., Anderson, E., Han, R.: X-MAC: a short preamble MAC protocol for duty-cycled wireless sensor networks. In: Proceedings of the 4th SenSys Conference (2006)

    Google Scholar 

  94. Schuß, M., Boano, C.A., Weber, M., Römer, K.: A competition to push the dependability of low-power wireless protocols to the edge. In: Proceedings of the 14th EWSN Conference (2017)

    Google Scholar 

  95. Burri, N., von Rickenbach, P., Wattenhofer, R.: Dozer: Ultra-low power data gathering in sensor networks. In: Proceedings of the 6th IPSN Conference (2007)

    Google Scholar 

  96. Bober, W., Bleakley, C.J.: Bailighpulse: a low duty cycle data gathering protocol for mostly-off wireless sensor networks. Comput. Netw. 69, 51–65 (2014)

    Article  Google Scholar 

  97. Boano, C.A., Römer, K.: External Radio Interference. In: Radio Link Quality Estimation in Low-Power Wireless Networks. Springer International Publishing (2013)

    Google Scholar 

  98. Wu, Y., Stankovic, J.A., He, T., Lin, S.: Realistic and efficient multi-channel communications in wireless sensor networks. In: Proceedings of the 27th IEEE INFOCOM Conference (2008)

    Google Scholar 

  99. Kim, Y., Shin, H., Cha, H.: Y-MAC: An energy-efficient multi-channel MAC protocol for dense wireless sensor networks. In: Proceedings of the 7th IEEE IPSN Conference (2008)

    Google Scholar 

  100. Rajendran, V., et al.: Energy-efficient, collision-free medium access control for wireless sensor networks. Wirel. Netw. 12(1), 63–78 (2006)

    Article  Google Scholar 

  101. van Hoesel, L., Havinga, P.: A lightweight medium access protocol (LMAC) for wireless sensor networks: reducing preamble transmissions and transceiver state switches. In: Proceedings of the \(1^{st}\), International Workshop on Networked Sensing Systems (INSS) (2004)

    Google Scholar 

  102. IEEE Standard for Local and metropolitan area networks. Part 15.4. Amendment 1: MAC sublayer. IEEE Computer Society Std. 802.15.4e (2012)

    Google Scholar 

  103. Abramson, N.: The ALOHA system: Another alternative for computer communications. In: Proceedings of the Fall Joint Computer Conference (1970)

    Google Scholar 

  104. Kleinrock, L., Tobagi, F.: Packet switching in radio channels: Part i-carrier sense multiple-access modes and their throughput-delay characteristics. IEEE Trans. Commun. 23(12), 1400–1416 (1975)

    Article  MATH  Google Scholar 

  105. Tobagi, F., Kleinrock, L.: Packet switching in radio channels: Part ii-the hidden terminal problem in carrier sense multiple-access and the busy-tone solution. IEEE Trans. Commun. 23(12), 1417–1433 (1975)

    Article  MATH  Google Scholar 

  106. Karn, P.: MACA-a new channel access method for packet radio. In: ARRL/CRRL Amateur radio 9th Computer Networking Conference, vol. 140 (1990)

    Google Scholar 

  107. IEEE Standard for Low-Rate Wireless Networks. IEEE Computer Society Standards, 802.15.4 (2015)

    Google Scholar 

  108. Zhou, G., Stankovic, J.A., Son, S.H.: Crowded spectrum in wireless sensor networks. In: Proceedings of the 3rd Workshop on Embedded Networked Sensors (EmNets) (2006)

    Google Scholar 

  109. Petrova, M., et al.: Interference measurements on performance degradation between colocated IEEE 802.11g/n and IEEE 802.15.4 networks. In: Proceedings of the 6th ICN Conference (2007)

    Google Scholar 

  110. IEEE Standard for Local and metropolitan area networks. Part 15.4. Amendment 1: Add Alternate PHYs. IEEE Standard 802.15.4a (2007)

    Google Scholar 

  111. Zhang, J., Orlik, P.V., Sahinoglu, Z., Molisch, A.F., Kinney, P.: UWB systems for wireless sensor networks. Proc. IEEE 97(2), 313–331 (2009)

    Article  Google Scholar 

  112. Catherwood, P.A., Scanlon, W.G.: Ultra-wideband communications-an idea whose time has still yet to come? IEEE Antennas Propag. Mag. 57(2) (2015)

    Article  Google Scholar 

  113. DW1000 Datasheet. Version 2.09. DecaWave Ltd. (2016)

    Google Scholar 

  114. Kempke, B., et al.: Surepoint: Exploiting ultra wideband flooding and diversity to provide robust, scalable, high-fidelity indoor localization. In: Proceedings of the 14th SenSys Conference (2016)

    Google Scholar 

  115. Conti, A., Dardari, D., Win, M.Z.: Experimental results on cooperative UWB based positioning systems. In: 2008 IEEE International Conference on Ultra-Wideband (2008)

    Google Scholar 

  116. Chehri, A., Fortier, P., Tardif, P.M.: UWB-based sensor networks for localization in mining environments. Ad Hoc Netw. 7(5), 987–1000 (2009)

    Article  Google Scholar 

  117. Chipara, O., Lu, C., Bailey, T.C. Roman, G.-C.: Reliable clinical monitoring using wireless sensor networks: Experiences in a step-down hospital unit. In: Proceedings of the 8th SenSys Conference, ser. SenSys ’10 (2010)

    Google Scholar 

  118. Angelopoulos, C.M., et al.: A smart system for garden watering using wireless sensor networks. In: Proceedings of the 9th ACM Symp. on Mobility Management and Wireless Access (2011)

    Google Scholar 

  119. Shen, X., Zhuang, W., Jiang, H., Cai, J.: Medium access control in ultra-wideband wireless networks. IEEE Trans. Veh. Technol. 54(5), 1663–1677 (2005)

    Article  Google Scholar 

  120. Sousa, E.S., Silvester, J.A.: Spreading code protocols for distributed spread-spectrum packet radio networks. IEEE Trans. Commun. 36(3), 272–281 (1988)

    Article  Google Scholar 

  121. Karapistoli, E., et al.: MAC protocols for ultra-wideband ad hoc and sensor networking: A survey. In: 4th International Congress on Ultra Modern Telecommunications and Control Systems (2012)

    Google Scholar 

  122. Liang, C.-J.M., Priyantha, N.B., Liu, J., Terzis, A.: Surviving Wi-Fi interference in low power ZigBee networks. In: Proceedings of the 8th SenSys Conference (2010)

    Google Scholar 

  123. Rao, V.P., Marandin, D.: Adaptive backoff exponent algorithm for Zigbee (IEEE 802.15.4). In:International Conference on Next Generation Wired/Wireless Networking (2006)

    Chapter  Google Scholar 

  124. Draves, R., Padhye, J., Zill, B.: Routing in multi-radio, multi-hop wireless mesh networks. In: Proceedings of the 10th International Conference on Mobile Computing and Networking (2004)

    Google Scholar 

  125. Beutel, J.: Fast-prototyping using the btnode platform. In: Proceedings of the Design Automation & Test in Europe Conference, vol. 1 (2006)

    Google Scholar 

  126. Lin, S., Zhang, J., Zhou, G., Gu, L., Stankovic, J.A., He, T.: ATPC: Adaptive transmission power control for wireless sensor networks. In: Proceedings of the 4th SenSys Conference (2006)

    Google Scholar 

  127. Cuomo, F., Martello, C., Baiocchi, A., et al.: Radio resource sharing for ad hoc networking with UWB. IEEE J. Sel. Areas Commun. 20(9), 1722–1732 (2002)

    Article  Google Scholar 

  128. DecaWave Ltd.: APR001 Part2 Application Note. Non line of sight operation and optimizations to improve performance in DW1000 based systems, version 1.4 (2014)

    Google Scholar 

  129. Watteyne, T., Lanzisera, S., Mehta, A., et al.: Mitigating multipath fading through channel hopping in wireless sensor networks. In: Proceedings of the International Conference on Communication (2010)

    Google Scholar 

  130. Song, J., Han, S., Mok, A., et al.: WirelessHART: Applying wireless technology in real-time industrial process control. In: Real-Time & Embedded Technology and Applications Symposium (2008)

    Google Scholar 

  131. ANT Alliance. https://www.thisisant.com/

  132. Du, P., Roussos, G.: Adaptive time slotted channel hopping for wireless sensor networks. In: Proceedings of the 4th Computer Science and Electronic Engineering Conference (2012)

    Google Scholar 

  133. Hauer, J.-H., Handziski, V., Wolisz, A.: Experimental study of the impact of WLAN interference on IEEE 802.15.4 body area networks. In: Proceedings of the \(6^{th}\) EWSN Conference (2009)

    Google Scholar 

  134. Musaloiu-E, R., Terzis, A.: Minimising the effect of WiFi interference in 802.15.4 wireless sensor networks. Int. J. Sens. Netw. 3(1), 43–54 (2007)

    Google Scholar 

  135. Zúñiga, M.A., Irzynska, I., Hauer, J.-H., et al.: Link quality ranking: Getting the best out of unreliable links. In: Proceedings of the \(7^{th}\) DCOSS Conference (2011)

    Google Scholar 

  136. Hermans, F., et al.: Light-weight approach to online detection and classification of interference in 802.15.4-based sensor networks. In: Proceedings of the 3rd CONET Workshop (2012)

    Article  Google Scholar 

  137. Boers, N.M., et al.: Sampling and classifying interference patterns in a wireless sensor network. ACM Trans. Sens. Netw. 9(1), 2:1–2:19 (2012)

    Article  Google Scholar 

  138. Kerkez, B., Watteyne, T., Magliocco, M., et al.: Feasibility analysis of controller design for adaptive channel hopping. In: Proceedings of the \(4^{th}\) Valuetools Conference (2009)

    Google Scholar 

  139. Xu, R., Shi, G., Luo, J., Zhao, Z., Shu, Y.: MuZi: Multi-channel ZigBee networks for avoiding WiFi interference. In: Proceedings of the \(4^{th}\) CPSCOM Conference (2011)

    Google Scholar 

  140. Varshney, A., et al.: Directional transmissions and receptions for high-throughput bulk forwarding in wireless sensor networks. In: Proceedings of the 13th SenSys Conference (2015)

    Google Scholar 

  141. Giorgetti, G., Cidronali, A., Gupta, S.K.S., Manes, G.: Exploiting low-cost directional antennas in 2.4 GHz IEEE 802.15.4 wireless sensor networks. In: Proceedings of the EuWiT (2007)

    Google Scholar 

  142. Michalopoulou, A., Koxias, E., Lazarakis, F., et al.: Investigation of directional antennas effect on energy efficiency and reliability of the IEEE 802.15.4 standard in outdoor wireless sensor networks. In: Proceedings of the 15th MMS Symposium (2015)

    Google Scholar 

  143. Dai, H.-N., Ng, K.-W., Li, M., Wu, M.-Y.: An overview of using directional antennas in wireless networks. Int. J. Commun. Syst. 26(4), 413–448 (2013)

    Article  Google Scholar 

  144. Nasipuri, A., et al.: A MAC protocol for mobile ad hoc networks using directional antennas. In: Proceedings of the IEEE Wireless Communication and Networking Conference, vol. 3 (2000)

    Google Scholar 

  145. Radunovic, B., Le Boudec, J.-Y.: Optimal power control, scheduling, and routing in UWB networks. IEEE J. Sel. Areas in Commun. 22(7), 1252–1270 (2004)

    Article  Google Scholar 

  146. Qi, Y., et al.: Clear channel assessment (CCA) with multiplexed preamble symbols for impulse ultra-wideband (UWB) communications. In: IEEE International Conference on UWB (2006)

    Google Scholar 

  147. Lazik, P., Rajagopal, N., Shih, O., Sinopoli, B., Rowe, A.: ALPS: A bluetooth and ultrasound platform for mapping and localization. In: Proceedings of the 13th SenSys Conference, ser. SenSys ’15 (2015)

    Google Scholar 

  148. Gezici, S., et al.: Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks. IEEE Signal Process. Mag. 22(4), 70–84 (2005)

    Article  Google Scholar 

  149. Alcock, P., Brown, J., Roedig, U.: Implementation and evaluation of combined positioning and communication. In: Real-World Wireless Sensor Networks, pp. 126–137 (2010)

    Chapter  Google Scholar 

  150. Cheong, P., Oppermann, I.: An energy-efficient positioning-enabled MAC protocol (PMAC) for UWB sensor networks. In : IST Mobile and Wireless Communication Summit (2005)

    Google Scholar 

  151. Kulmer, J., Hinteregger, S., Großwindhager, B., Rath, M., Bakr, M., Leitinger, E., Witrisal, K.: Using decawave UWB transceivers for high-accuracy multipath-assisted indoor positioning. In: IEEE ICC 2017 Workshop on Advances in Network Localization and Navigation (ANLN) (2017)

    Google Scholar 

  152. Greiner, P., Grosinger, J., Schweighofer, J., Steffan, C., Wilfling, S., Holweg, G., Bösch, W.: A system on chip crystal-less wireless sub-GHz transmitter. IEEE Trans. Microw. Theory Tech. (2017)

    Google Scholar 

Download references

Acknowledgements

This work was performed within the LEAD-Project “Dependable Internet of Things in Adverse Environments” funded by Graz University of Technology, Austria, and partly within the “Kalium Home Monitoring” project funded by the Austrian Research Promotion Agency (FFG), Austria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kay Römer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Großwindhager, B. et al. (2019). Dependable Wireless Communication and Localization in the Internet of Things. In: Ammari, H. (eds) Mission-Oriented Sensor Networks and Systems: Art and Science. Studies in Systems, Decision and Control, vol 164. Springer, Cham. https://doi.org/10.1007/978-3-319-92384-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92384-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92383-3

  • Online ISBN: 978-3-319-92384-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics