Skip to main content

Algorithmic Design of Cotranscriptionally Folding 2D RNA Origami Structures

  • Conference paper
  • First Online:
Unconventional Computation and Natural Computation (UCNC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10867))

Abstract

We address a biochemical folding obstacle of “polymerase trapping” that arises in the remarkable RNA origami tile design framework of Geary, Rothemund and Andersen (Science 2014). We present a combinatorial formulation of this obstacle, together with an optimisation procedure that yields designs minimising the risk of encountering the corresponding topological trap in the tile folding phase. The procedure has been embedded in an automated software pipeline, and we provide examples of designs produced by the software, including an optimised version of the RNA smiley-face tile proposed by Geary and Andersen (DNA 2014).

Research supported by Academy of Finland grant 311639, “Algorithmic Designs for Biomolecular Nanostructures (ALBION)”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We are currently working on the challenge of transforming the secondary-structure descriptions to actual RNA sequences, but lab-proof sequence design is a nontrivial task, and validating that the generated sequences really fold as intended requires experimental work.

  2. 2.

    A spanning tree of a graph is a cycle-free subset of the graph that includes all the vertices of the graph [2, Chap. 23].

  3. 3.

    This standard graph algorithm technique is discussed e.g. in [2, Sect. 35.2].

References

  1. Chworos, A., Severcan, I., Koyfman, A.Y., Weinkam, P., Oroudjev, E., Hansma, H.G., Jaeger, L.: Building programmable jigsaw puzzles with RNA. Science 306(5704), 2068–2072 (2004). https://doi.org/10.1126/science.1104686

    Article  Google Scholar 

  2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  3. Geary, C., Chworos, A., Verzemnieks, E., Voss, N.R., Jaeger, L.: Composing RNA nanostructures from a syntax of RNA structural modules. Nano Lett. 17(11), 7095–7101 (2017). https://doi.org/10.1021/acs.nanolett.7b03842

    Article  Google Scholar 

  4. Geary, C., Meunier, P.E., Schabanel, N., Seki, S.: Programming biomolecules than fold greedily during transcription. In: Proceedings, 41st International Conference on Mathematical Foundations of Computer Science (MFCS 2016). LIPIcs, vol. 58, pp. 43:1–43:14. Dagstuhl Publishing (2016). https://doi.org/10.4230/LIPIcs.MFCS.2016.43

  5. Geary, C., Rothemund, P.W.K., Andersen, E.S.: A single-stranded architecture for cotranscriptional folding of RNA nanostructures. Science 345(6198), 799 (2014). https://doi.org/10.1126/science.1253920

    Article  Google Scholar 

  6. Geary, C.W., Andersen, E.S.: Design principles for single-stranded RNA origami structures. In: Murata, S., Kobayashi, S. (eds.) DNA 2014. LNCS, vol. 8727, pp. 1–19. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11295-4_1

    Chapter  Google Scholar 

  7. Guo, P.: The emerging field of RNA nanotechnology. Nat. Nanotech. 5, 833–842 (2010). https://doi.org/10.1038/nnano.2010.231

    Article  Google Scholar 

  8. Han, D., Qi, W., Myhrvold, C., Wang, B., Dai, M., Jiang, S., Bates, M., Liu, Y., An, B., Zhang, F., Yan, H., Yin, P.: Single-stranded DNA and RNA origami. Science 358(6369), eaao2648 (2017). https://doi.org/10.1126/science.aao2648

    Article  Google Scholar 

  9. Jasinski, D., Haque, F., Binzel, D.W., Guo, P.: Advancement of the emerging field of RNA nanotechnology. ACS Nano 11(2), 1142–1164 (2017). https://doi.org/10.1021/acsnano.6b05737

    Article  Google Scholar 

  10. Kohman, R., Kunjapur, A.M., Hysolli, E., Wang, Y., Church, G.M.: From designing the molecules of life to designing life: future applications derived from advances in DNA technologies. Angew. Chem. Int. Ed. 57, 4313–4328 (2018). https://doi.org/10.1002/anie.201707976

    Article  Google Scholar 

  11. Kreweras, G.: Complexité et circuits eulériens dans les sommes tensorielles de graphes. J. Comb. Theory Ser. B 24(2), 202–212 (1978). https://doi.org/10.1016/0095-8956(78)90021-7

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, Y., Mao, C., Deng, Z.: Supramolecular wireframe DNA polyhedra: assembly and applications. Chin. J. Chem. 35(6), 801–810 (2017). https://doi.org/10.1002/cjoc.201600789

    Article  Google Scholar 

  13. Orponen, P.: Design methods for DNA nanostructures. Nat. Comput. 17(1), 147–160 (2018). https://doi.org/10.1007/s11047-017-9647-9

    Article  MathSciNet  Google Scholar 

  14. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440(7082), 297–302 (2006). https://doi.org/10.1038/nature04586

    Article  Google Scholar 

  15. Seeman, N.C.: Structural DNA Nanotechnology. Cambridge University Press, Cambridge (2015)

    Book  Google Scholar 

  16. Seeman, N.C., Sleiman, H.F.: DNA nanotechnology. Nat. Rev. Mater. 3, 17068 (2017). https://doi.org/10.1038/natrevmats.2017.68

    Article  Google Scholar 

  17. Westhof, E., Masquida, B., Jaeger, L.: RNA tectonics: towards RNA design. Fold. Des. 1(4), R78–R88 (1996). https://doi.org/10.1016/S1359-0278(96)00037-5

    Article  Google Scholar 

  18. Zhang, F., Nangreave, J., Liu, Y., Yan, H.: Structural DNA nanotechnology: state of the art and future perspective. J. Am. Chem. Soc. 136(32), 11198–11211 (2014). https://doi.org/10.1021/ja505101a

    Article  Google Scholar 

Download references

Acknowledgments

We thank Ebbe Andersen and Cody Geary for introducing us to the problem of polymerase trapping in RNA origami tile design, and their encouragement to proceed with the solution approach discussed in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulmelik Mohammed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mohammed, A., Orponen, P., Pai, S. (2018). Algorithmic Design of Cotranscriptionally Folding 2D RNA Origami Structures. In: Stepney, S., Verlan, S. (eds) Unconventional Computation and Natural Computation. UCNC 2018. Lecture Notes in Computer Science(), vol 10867. Springer, Cham. https://doi.org/10.1007/978-3-319-92435-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92435-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92434-2

  • Online ISBN: 978-3-319-92435-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics