Skip to main content

A Time-Varying-Constrained Motion Generation Scheme for Humanoid Robot Arms

  • Conference paper
  • First Online:
Advances in Neural Networks – ISNN 2018 (ISNN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10878))

Included in the following conference series:

Abstract

An efficient time-varying gesture-determined dynamical (TV-GDD) scheme is proposed for motion planning of redundant dual-arms manipulation. Motion planning for such tasks on humanoid robots with a high number of degrees-of-freedom (DOF) requires computationally efficient approaches to generate the expected joint configuration when given the end-effector tasks. To do so, we investigate a time-varying joint-limits constrained quadratic-programming (QP) approach and an efficient numerical computing method. This strategy provides feasible solutions at a low computation cost within physical limits. In addition, the joint configuration can be adjusted dynamically according to the expected gestures and tasks. Comparative simulations and experimental results on a humanoid robot demonstrate the effectiveness and feasibility of the scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bouyarmane, K., Kheddar, A.: On weight-prioritized multi-task control of humanoid robots. IEEE Trans. Autom. Control pp, 1 (2017)

    Google Scholar 

  2. Liu, Z., Chen, C., Zhang, Y., Chen, C.L.: Adaptive neural control for dual-arm coordination of humanoid robot with unknown nonlinearities in output mechanism. IEEE Trans. Cybern. 45, 521 (2015)

    Google Scholar 

  3. Xiao, Y., Zhang, Z., Beck, A., Yuan, J., Thalmann, D.: Human-robot interaction by understanding upper body gestures. Presence: Teleoperators Virtual Environ. 23(2), 133–154 (2014)

    Article  Google Scholar 

  4. Shin, S., Kim, C.: Human-like motion generation and control for humanoid’s dual arm object manipulation. IEEE Trans. Ind. Electron. 62, 2265–2276 (2015)

    Article  Google Scholar 

  5. Goertz, R.C.: Fundamentals of general purpose remote manipulators. Nucleonics 10(11), 36–42 (1952)

    Google Scholar 

  6. Fletcher, T.: The Undersea Mobot, Nuclear Electronics Laboratory of Hughes Aircraft Company. Technical Report, January 1960

    Google Scholar 

  7. Kuindersma, S., Scott, R., Robin, F., Maurice, V.: Optimization-based iocomotion planning, estimation, and control design for the atlas humanoid robot. Auton. Robot. 40, 429–455 (2016)

    Article  Google Scholar 

  8. Lyubova, N., Ivaldi, S., Filliat, D.: From passive to interactive object learning and recognition through self-identification on a humanoid robot. Auton. Robot. 40, 33–57 (2016)

    Article  Google Scholar 

  9. Nunez, J.V., Briseno, A., Rodriguez, D.A., Ibarra, J.M., Rodriguez, V.M.: Explicit analytic solution for inverse kinematics of bioloid humanoid robot. In: Robotics Symposium and Latin American Robotics Symposium, pp. 33–38. IEEE (2012)

    Google Scholar 

  10. Wang, J., Li, Y.: Inverse kinematics analysis for the arm of a mobile humanoid robot based on the closed-loop algorithm. In: International Conference on Information and Automation, pp. 516–521. IEEE (2009)

    Google Scholar 

  11. Kanoun, O., Lamiraux, F., Wieber, P.-B.: Kinematic control of redundant manipulators: generalizing the task-priority framework to inequality task. IEEE Trans. Robot. 27(4), 785–792 (2011)

    Article  Google Scholar 

  12. Zhang, Z., Zhang, Y.: Acceleration-level cyclic-motion generation of constrained redundant robots tracking different paths. IEEE Trans. Syst. Man Cybern. Part B (Cybern.), 42(4), 1257–1269 (2012)

    Google Scholar 

  13. Zhang, Z., Zhang, Y.: Equivalence of different-level schemes for repetitive motion planning of redundant robots. Acta Autom. Sinica 39(1), 88–91 (2013)

    Article  MathSciNet  Google Scholar 

  14. Cheng, F., Chen, T., Sun, Y.: Resolving manipulator redundancy under inequality constraints. IEEE Trans. Robot. Autom. 10, 65–71 (1994)

    Article  Google Scholar 

  15. He, B.: A new method for a class of linear variational inequalities. Math. Program. 66, 137–144 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation under Grants 61603142 and 61633010, the Guangdong Foundation for Distinguished Young Scholars under Grant 2017A030306009, the Science and Technology Program of Guangzhou under Grant 201707010225, the Fundamental Research Funds for Central Universities under Grant 2017MS049.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhijun Zhang or Lingdong Kong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Z., Kong, L., Niu, Y. (2018). A Time-Varying-Constrained Motion Generation Scheme for Humanoid Robot Arms. In: Huang, T., Lv, J., Sun, C., Tuzikov, A. (eds) Advances in Neural Networks – ISNN 2018. ISNN 2018. Lecture Notes in Computer Science(), vol 10878. Springer, Cham. https://doi.org/10.1007/978-3-319-92537-0_86

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92537-0_86

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92536-3

  • Online ISBN: 978-3-319-92537-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics