Skip to main content

Network Study on SecA – A Component of Sec Secretion System in Bacteria Pseudomonas Aeruginosa

  • Conference paper
  • First Online:
Advances in Neural Networks – ISNN 2018 (ISNN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10878))

Included in the following conference series:

  • 3829 Accesses

Abstract

Pseudomonas aeruginosa is a Gram-negative bacterium and infects plants, animals and humans. Secretion systems in P. aeruginosa play an important role in infections. Sec secretion system has eight components, of which SecA is an ATPase. However, gene network study on how SecA functions under different experimental conditions has yet to be done. In this study, network is used to analyze P. aeruginosa genes under four types of experimental conditions, i.e. stress, habitat, nutrition and mutation. Special attention is given to (i) how many clusters form under control and experimental conditions, (ii) how many genes in SecA cluster, (iii) how many genes change their membership together with SecA, and (iv) which gene connects with SecA under control and experimental conditions, and their functions. The results demonstrate how genes reorganize under experimental conditions, and discussion is given to the reasons for such reorganizations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sitaraman, R.: Pseudomonas spp. as models for plant-microbe interactions. Front. Plant Sci. 6, 787 (2015)

    Article  Google Scholar 

  2. Rahme, L.G., Ausubel, F.M., Cao, H., Drenkard, E., Goumnerov, B.C., Lau, G.W., Mahajan-Miklos, S., Plotnikova, J., Tan, M.W., Tsongalis, J., Walendziewicz, C.L., Tompkins, R.G.: Plants and animals share functionally common bacterial virulence factors. Proc. Natl. Acad. Sci. U.S.A. 97, 8815–8821 (2000)

    Article  Google Scholar 

  3. Willcox, M.D.: Pseudomonas aeruginosa infection and inflammation during contact lens wear: a review. Optom. Vis. Sci. 84, 273–278 (2007)

    Article  Google Scholar 

  4. Church, D., Elsayed, S., Reid, O., Winston, B., Lindsay, R.: Burn wound infections. Clin. Microbiol. Rev. 19, 403–434 (2006)

    Article  Google Scholar 

  5. Elborn, J.S.: Cystic fibrosis. Lancet 388(10059), 2519–2531 (2016)

    Article  Google Scholar 

  6. Klockgether, J., Tümmler, B.: Recent advances in understanding Pseudomonas aeruginosa as a pathogen. F1000Res. 6, 1261 (2017)

    Article  Google Scholar 

  7. Buhl, M., Peter, S., Willmann, M.: Prevalence and risk factors associated with colonization and infection of extensively drug-resistant Pseudomonas aeruginosa: a systematic review. Expert Rev. Anti. Infect. Ther. 13, 1159–1170 (2015)

    Article  Google Scholar 

  8. Yan, S., Wu, G.: Secretory pathway of cellulase: a mini-review. Biotechnol. Biofuels 6, 177 (2013)

    Article  Google Scholar 

  9. Cianciotto, N.P., White, R.C.: Expanding role of type II secretion in bacterial pathogenesis and beyond. Infect. Immun. 85 pii, e00014–e00017 (2017)

    Article  Google Scholar 

  10. Costa, T.R., Felisberto-Rodrigues, C., Meir, A., Prevost, M.S., Redzej, A., Trokter, M., Waksman, G.: Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat. Rev. Microbiol. 13, 343–359 (2015)

    Article  Google Scholar 

  11. Tsirigotaki, A., De Geyter, J., Sostaric, N., Economou, A., Karamanou, S.: Protein export through the bacterial Sec pathway. Nat. Rev. Microbiol. 15, 21–36 (2017)

    Article  Google Scholar 

  12. Sardis, M.F., Economou, A.: SecA: a tale of two protomers. Mol. Microbiol. 76, 1070–1081 (2010)

    Article  Google Scholar 

  13. Yan, S., Wu, G.: Large-scale evolutionary analyses on SecB of bacterial Sec system. PLoS ONE 10, e0120417 (2015)

    Article  Google Scholar 

  14. Beckwith, J.: The Sec-dependent pathway. Res. Microbiol. 164, 497–504 (2013)

    Article  Google Scholar 

  15. Yan, S., Wu, G.: Evolutionary evidence on suitability of SecD as a target for development of antibacterial agents against Staphylococcus aureus. Ecol. Evol. 6, 1393–1410 (2016)

    Article  Google Scholar 

  16. Komar, J., Alvira, S., Schulze, R.J., Martin, R., Lycklama, A., Nijeholt, J.A., Lee, S.C., Dafforn, T.R., Deckers-Hebestreit, G., Berger, I., Schaffitzel, C., Collinson, I.: Membrane protein insertion and assembly by the bacterial holo-translocon SecYEG-SecDF-YajC-YidC. Biochem. J. 473, 3341–3354 (2016)

    Article  Google Scholar 

  17. Kusters, I., Driessen, A.J.: SecA, a remarkable nanomachine. Cell. Mol. Life Sci. 68, 2053–2066 (2011)

    Article  Google Scholar 

  18. Barrett, T., Wilhite, S.E., Ledoux, P., Evangelista, C., Kim, I.F., Tomashevsky, M., Marshall, K.A., Phillippy, K.H., Sherman, P.M., Holko, M., Yefanov, A., Lee, H., Zhang, N., Robertson, C.L., Serova, N., Davis, S., Soboleva, A.: NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res. 41, D991–D995 (2013)

    Article  Google Scholar 

  19. http://www.affymetrix.com/support/technical/byproduct.affx?product=paeruginosa

  20. Yan, S., Wu, G.: Reorganization of gene network for degradation of polycyclic aromatic hydrocarbons (PAHs) in Pseudomonas aeruginosa PAO1 under several conditions. J. Appl. Genet. 58, 545–563 (2017)

    Article  Google Scholar 

  21. http://igraph.org/

  22. de Nooy, W., Mrvar, A., Batagelj, V.: Exploratory Social Network Analysis with Pajek: Revised and Expanded Second Edition, Structural Analysis in the Social Sciences 34. Cambridge University Press, Cambride (2011)

    Book  Google Scholar 

  23. Nalca, Y., Jänsch, L., Bredenbruch, F., Geffers, R., Buer, J., Häussler, S.: Quorum-sensing antagonistic activities of azithromycin in Pseudomonas aeruginosa PAO1: a global approach. Antimicrob. Agents Chemother. 50, 1680–1688 (2006)

    Article  Google Scholar 

  24. Cirz, R.T., O’Neill, B.M., Hammond, J.A., Head, S.R., Romesberg, F.E.: Defining the Pseudomonas aeruginosa SOS response and its role in the global response to the antibiotic ciprofloxacin. J. Bacteriol. 188, 7101–7110 (2006)

    Article  Google Scholar 

  25. Das, T., Manefield, M.: Phenazine production enhances extracellular DNA release via hydrogen peroxide generation in Pseudomonas aeruginosa. Commun. Integr. Biol. 6, e23570 (2013)

    Article  Google Scholar 

  26. Chang, W., Small, D.A., Toghrol, F., Bentley, W.E.: Microarray analysis of Pseudomonas aeruginosa reveals induction of pyocin genes in response to hydrogen peroxide. BMC Genom. 6, 115 (2005)

    Article  Google Scholar 

  27. Deng, X., Liang, H., Ulanovskaya, O.A., Ji, Q., Zhou, T., Sun, F., Lu, Z., Hutchison, A.L., Lan, L., Wu, M., Cravatt, B.F., He, C.: Steady-state hydrogen peroxide induces glycolysis in Staphylococcus aureus and Pseudomonas aeruginosa. J. Bacteriol. 196, 2499–2513 (2014)

    Article  Google Scholar 

  28. Weir, T.L., Stull, V.J., Badri, D., Trunck, L.A., Schweizer, H.P., Vivanco, J.: Global gene expression profiles suggest an important role for nutrient acquisition in early pathogenesis in a plant model of Pseudomonas aeruginosa infection. Appl. Environ. Microbiol. 74, 5784–5791 (2008)

    Article  Google Scholar 

  29. Mikkelsen, H., Bond, N.J., Skindersoe, M.E., Givskov, M., Lilley, K.S., Welch, M.: Biofilms and type III secretion are not mutually exclusive in Pseudomonas aeruginosa. Microbiology 155, 687–598 (2009)

    Article  Google Scholar 

  30. Koh, A.Y., Mikkelsen, P.J., Smith, R.S., Coggshall, K.T., Kamei, A., Givskov, M., Lory, S., Pier, G.B.: Utility of in vivo transcription profiling for identifying Pseudomonas aeruginosa genes needed for gastrointestinal colonization and dissemination. PLoS ONE 5, e15131 (2010)

    Article  Google Scholar 

  31. Bielecki, P., Puchałka, J., Wos-Oxley, M.L., Loessner, H., Glik, J., Kawecki, M., Nowak, M., Tümmler, B., Weiss, S., dos Santos, V.A.: In-vivo expression profiling of Pseudomonas aeruginosa infections reveals niche-specific and strain-independent transcriptional programs. PLoS ONE 6, e24235 (2011)

    Article  Google Scholar 

  32. Manos, J., Arthur, J., Rose, B., Tingpej, P., Fung, C., Curtis, M., Webb, J.S., Hu, H., Kjelleberg, S., Gorrell, M.D., Bye, P., Harbour, C.: Transcriptome analyses and biofilm-forming characteristics of a clonal Pseudomonas aeruginosa from the cystic fibrosis lung. J. Med. Microbiol. 57, 1454–1565 (2008)

    Article  Google Scholar 

  33. Kumar, V., Abbas, A.K., Aster, J.: Robbins Basic Pathology. Elsevier, New York (2017)

    Google Scholar 

  34. O’Sullivan, B.P., Freedman, S.D.: Cystic fibrosis. Lancet 373, 1891–1904 (2009)

    Google Scholar 

  35. Zheng, P., Sun, J., Geffers, R., Zeng, A.P.: Functional characterization of the gene PA2384 in large-scale gene regulation in response to iron starvation in Pseudomonas aeruginosa. J. Biotechnol. 132, 342–352 (2007)

    Article  Google Scholar 

  36. Tralau, T., Vuilleumier, S., Thibault, C., Campbell, B.J., Hart, C.A., Kertesz, M.A.: Transcriptomic analysis of the sulfate starvation response of Pseudomonas aeruginosa. J. Bacteriol. 189, 6743–6750 (2007)

    Article  Google Scholar 

  37. Alvarez-Ortega, C., Harwood, C.S.: Responses of Pseudomonas aeruginosa to low oxygen indicate that growth in the cystic fibrosis lung is by aerobic respiration. Mol. Microbiol. 65, 153–165 (2007)

    Article  Google Scholar 

  38. Zaborin, A., Gerdes, S., Holbrook, C., Liu, D.C., Zaborina, O.Y., Alverdy, J.C.: Pseudomonas aeruginosa overrides the virulence inducing effect of opioids when it senses an abundance of phosphate. PLoS ONE 7, e34883 (2012)

    Article  Google Scholar 

  39. Bredenbruch, F., Geffers, R., Nimtz, M., Buer, J., Häussler, S.: The Pseudomonas aeruginosa quinolone signal (PQS) has an iron-chelating activity. Environ. Microbiol. 8, 1318–1329 (2006)

    Article  Google Scholar 

  40. Lequette, Y., Lee, J.H., Ledgham, F., Lazdunski, A., Greenberg, E.P.: A distinct QscR regulon in the Pseudomonas aeruginosa quorum-sensing circuit. J. Bacteriol. 188, 3365–3370 (2006)

    Article  Google Scholar 

  41. Kang, Y., Nguyen, D.T., Son, M.S., Hoang, T.T.: The Pseudomonas aeruginosa PsrA responds to long-chain fatty acid signals to regulate the fadBA5 beta-oxidation operon. Microbiology 154, 1584–1598 (2008)

    Article  Google Scholar 

  42. Attila, C., Ueda, A., Wood, T.K.: PA2663 (PpyR) increases biofilm formation in Pseudomonas aeruginosa PAO1 through the psl operon and stimulates virulence and quorum-sensing phenotypes. Appl. Microbiol. Biotechnol. 78, 293–307 (2008)

    Article  Google Scholar 

  43. Llamas, M.A., Mooij, M.J., Sparrius, M., Vandenbroucke-Grauls, C.M., Ratledge, C., Bitter, W.: Characterization of five novel Pseudomonas aeruginosa cell-surface signalling systems. Mol. Microbiol. 67, 458–472 (2008)

    Article  Google Scholar 

  44. Chou, H.T., Kwon, D.H., Hegazy, M., Lu, C.D.: Transcriptome analysis of agmatine and putrescine catabolism in Pseudomonas aeruginosa PAO1. J. Bacteriol. 190, 1966–1975 (2008)

    Article  Google Scholar 

  45. Manos, J., Arthur, J., Rose, B., Bell, S., Tingpej, P., Hu, H., Webb, J., Kjelleberg, S., Gorrell, M.D., Bye, P., Harbour, C.: Gene expression characteristics of a cystic fibrosis epidemic strain of Pseudomonas aeruginosa during biofilm and planktonic growth. FEMS Microbiol. Lett. 292, 107–114 (2009)

    Article  Google Scholar 

  46. Winsor, G.L., Griffiths, E.J., Lo, R., Dhillon, B.K., Shay, J.A., Brinkman, F.S.: Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res. 44, D646–D653 (2016)

    Article  Google Scholar 

  47. Huber, D., Jamshad, M., Hanmer, R., Schibich, D., Döring, K., Marcomini, I., Kramer, G., Bukau, B.: SecA cotranslationally interacts with nascent substrate proteins in vivo. J. Bacteriol. 199, pii: e00622–e00616 (2016)

    Google Scholar 

Download references

Acknowledgements

This study was partly supported by National Natural Science Foundation of China (31460296 and 31560315), and Special Funds for Building of Guangxi Talent Highland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yan, S., Wu, G. (2018). Network Study on SecA – A Component of Sec Secretion System in Bacteria Pseudomonas Aeruginosa. In: Huang, T., Lv, J., Sun, C., Tuzikov, A. (eds) Advances in Neural Networks – ISNN 2018. ISNN 2018. Lecture Notes in Computer Science(), vol 10878. Springer, Cham. https://doi.org/10.1007/978-3-319-92537-0_91

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92537-0_91

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92536-3

  • Online ISBN: 978-3-319-92537-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics