Skip to main content

A Preliminary Study of Diversity in Extreme Learning Machines Ensembles

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2018)

Abstract

In this paper, the neural network version of Extreme Learning Machine (ELM) is used as a base learner for an ensemble meta-algorithm which promotes diversity explicitly in the ELM loss function. The cost function proposed encourages orthogonality (scalar product) in the parameter space. Other ensemble-based meta-algorithms from AdaBoost family are used for comparison purposes. Both accuracy and diversity presented in our proposal are competitive, thus reinforcing the idea of introducing diversity explicitly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The dot product is squared aiming to focus solely on the direction of the vector.

References

  1. Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Burlington (2016)

    Google Scholar 

  2. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of Machine Learning. MIT press, Cambridge (2012)

    MATH  Google Scholar 

  3. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45014-9_1

    Chapter  Google Scholar 

  4. Zhang, L., Shah, S., Kakadiaris, I.: Hierarchical multi-label classification using fully associative ensemble learning. Pattern Recogn. 70, 89–103 (2017)

    Article  Google Scholar 

  5. Krawczyk, B., Minku, L.L., Gama, J., Stefanowski, J., Woźniak, M.: Ensemble learning for data stream analysis: a survey. Inf. Fusion 37, 132–156 (2017)

    Article  Google Scholar 

  6. Polikar, R.: Ensemble learning. In: Zhang, C., Ma, Y. (eds.) Ensemble Machine Learning, pp. 1–34. Springer, Boston (2012). https://doi.org/10.1007/978-1-4419-9326-71

    Chapter  Google Scholar 

  7. Bbeiman, L.: Bagging predictors. Mach, Learn. 24, 123–140 (1996)

    MATH  Google Scholar 

  8. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55, 119–139 (1997)

    Article  MathSciNet  Google Scholar 

  9. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and applications. Neurocomputing 70(1), 489–501 (2006)

    Article  Google Scholar 

  10. Huang, G.-B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B Cybern. 42(2), 513–29 (2012)

    Article  Google Scholar 

  11. Tian, H., Meng, B.: A new modeling method based on bagging elm for day-ahead electricity price prediction. In: 2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA), pp. 1076–1079. IEEE (2010)

    Google Scholar 

  12. Riccardi, A., Fernández-Navarro, F., Carloni, S.: Cost-sensitive AdaBoost algorithm for ordinal regression based on extreme learning machine. IEEE Trans. Cybern. 44(10), 1898–1909 (2014)

    Article  Google Scholar 

  13. Kuncheva, L.I., Whitaker, C.J.: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach. Learn. 51(2), 181–207 (2003)

    Article  Google Scholar 

  14. Freund, Y., Schapire, R.E.: A short introduction to boosting. J. Jpn. Soc. Artif. Intell. 14(5), 771–780 (1999)

    Google Scholar 

  15. Lichman, M.: UCI machine learning repository (2013)

    Google Scholar 

  16. Ran, Y., Sun, X., Sun, H., Sun, L., Wang, X., Ran, Y.W.X., Sun, X., Sun, H., Sun, L.: Boosting ridge extreme learning machine. In: Proceedings - 2012 IEEE Symposium on Robotics and Applications, ISRA 2012, pp. 881–884 (2012)

    Google Scholar 

  17. Wang, S., Chen, H., Yao, X.: Negative correlation learning for classification ensembles. In: Proceedings of the International Joint Conference on Neural Networks (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Perales-González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Perales-González, C., Carbonero-Ruz, M., Becerra-Alonso, D., Fernández-Navarro, F. (2018). A Preliminary Study of Diversity in Extreme Learning Machines Ensembles. In: de Cos Juez, F., et al. Hybrid Artificial Intelligent Systems. HAIS 2018. Lecture Notes in Computer Science(), vol 10870. Springer, Cham. https://doi.org/10.1007/978-3-319-92639-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92639-1_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92638-4

  • Online ISBN: 978-3-319-92639-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics