Skip to main content

Equivalence and Independence in Controlled Graph-Rewriting Processes

  • Conference paper
  • First Online:
Graph Transformation (ICGT 2018)

Abstract

Graph transformation systems (GTS) are often defined as sets of rules that can be applied repeatedly and non-deterministically to model the evolution of a system. Several semantics proposed for GTSs are relevant in this case, providing means for analysing the system’s behaviour in terms of dependencies, conflicts and potential parallelism among the relevant events. Several other approaches equip GTSs with an additional control layer useful for specifying rule application strategies, for example to describe graph manipulation algorithms. Almost invariably, the latter approaches consider only an input-output semantics, for which the above mentioned semantics are irrelevant.

We propose an original approach to controlled graph transformation, where we aim at bridging the gap between these two complementary classes of approaches. The control is represented by terms of a simple process calculus. Expressiveness is addressed by encoding in the calculus the Graph Processes defined by Habel and Plump, and some initial results are presented relating parallel independence with process algebraic notions like bisimilarity.

This work has been partially funded by the German Research Foundation (DFG) as part of project A1 within CRC 1053–MAKI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baldan, P., Bruni, A., Corradini, A., König, B., Rodríguez, C., Schwoon, S.: Efficient unfolding of contextual Petri nets. Theor. Comput. Sci. 449, 2–22 (2012). https://doi.org/10.1016/j.tcs.2012.04.046

    Article  MathSciNet  MATH  Google Scholar 

  2. Baldan, P., Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Löwe, M.: Concurrent semantics of algebraic graph transformation. In: Handbook of Graph Grammars and Computing by Graph Transformation, vol. 3, pp. 107–187. World Scientific (1999). https://doi.org/10.1142/9789812814951_0003

    Chapter  Google Scholar 

  3. Bunke, H.: Programmed graph grammars. In: Claus, V., Ehrig, H., Rozenberg, G. (eds.) Graph Grammars 1978. LNCS, vol. 73, pp. 155–166. Springer, Heidelberg (1979). https://doi.org/10.1007/BFb0025718

    Chapter  Google Scholar 

  4. Corradini, A., Montanari, U., Rossi, F.: Graph processes. Fundam. Inform. 26(3/4), 241–265 (1996). https://doi.org/10.3233/FI-1996-263402

    Article  MathSciNet  MATH  Google Scholar 

  5. Corradini, A., et al.: On the essence of parallel independence for the double-pushout and sesqui-pushout approaches. In: Heckel, R., Taentzer, G. (eds.) Graph Transformation, Specifications, and Nets. LNCS, vol. 10800, pp. 1–18. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75396-6_1

    Chapter  Google Scholar 

  6. Dassow, J., Păun, G., Salomaa, A.: Grammars with controlled derivations. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 2, pp. 101–154. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-662-07675-0_3

    Chapter  Google Scholar 

  7. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-31188-2

    Book  MATH  Google Scholar 

  8. Ehrig, H., König, B.: Deriving bisimulation congruences in the DPO approach to graph rewriting. In: Walukiewicz, I. (ed.) FoSSaCS 2004. LNCS, vol. 2987, pp. 151–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24727-2_12

    Chapter  Google Scholar 

  9. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story diagrams: a new graph rewrite language based on the unified modeling language and Java. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764, pp. 296–309. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-540-46464-8_21

    Chapter  MATH  Google Scholar 

  10. Habel, A., Plump, D.: Computational completeness of programming languages based on graph transformation. In: Honsell, F., Miculan, M. (eds.) FoSSaCS 2001. LNCS, vol. 2030, pp. 230–245. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45315-6_15

    Chapter  MATH  Google Scholar 

  11. Kluge, R., Stein, M., Varró, G., Schürr, A., Hollick, M., Mühlhäuser, M.: A systematic approach to constructing families of incremental topology control algorithms using graph transformation. Softw. Syst. Model. 38, 47–83 (2017). https://doi.org/10.1016/j.jvlc.2016.10.003

    Article  Google Scholar 

  12. Leblebici, E., Anjorin, A., Schürr, A.: Developing eMoflon with eMoflon. In: Di Ruscio, D., Varró, D. (eds.) ICMT 2014. LNCS, vol. 8568, pp. 138–145. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08789-4_10

    Chapter  MATH  Google Scholar 

  13. Plump, D., Steinert, S.: The semantics of graph programs. In: RULE. EPTCS, vol. 21 (2009). https://doi.org/10.4204/EPTCS.21.3

  14. Schürr, A.: Logic-based programmed structure rewriting systems. Fundam. Inform. 26(3, 4), 363–385 (1996). https://doi.org/10.3233/FI-1996-263407

    Article  MathSciNet  MATH  Google Scholar 

  15. Schürr, A., Winter, A.J., Zündorf, A.: The PROGRES-approach: language and environment. In: Handbook of Graph Grammars and Computing by Graph Transformation, vol. 2, pp. 487–550. World Scientific (1999). https://doi.org/10.1142/9789812815149_0013

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Géza Kulcsár .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kulcsár, G., Corradini, A., Lochau, M. (2018). Equivalence and Independence in Controlled Graph-Rewriting Processes. In: Lambers, L., Weber, J. (eds) Graph Transformation. ICGT 2018. Lecture Notes in Computer Science(), vol 10887. Springer, Cham. https://doi.org/10.1007/978-3-319-92991-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92991-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92990-3

  • Online ISBN: 978-3-319-92991-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics