Abstract
Graph transformation systems (GTS) are often defined as sets of rules that can be applied repeatedly and non-deterministically to model the evolution of a system. Several semantics proposed for GTSs are relevant in this case, providing means for analysing the system’s behaviour in terms of dependencies, conflicts and potential parallelism among the relevant events. Several other approaches equip GTSs with an additional control layer useful for specifying rule application strategies, for example to describe graph manipulation algorithms. Almost invariably, the latter approaches consider only an input-output semantics, for which the above mentioned semantics are irrelevant.
We propose an original approach to controlled graph transformation, where we aim at bridging the gap between these two complementary classes of approaches. The control is represented by terms of a simple process calculus. Expressiveness is addressed by encoding in the calculus the Graph Processes defined by Habel and Plump, and some initial results are presented relating parallel independence with process algebraic notions like bisimilarity.
This work has been partially funded by the German Research Foundation (DFG) as part of project A1 within CRC 1053–MAKI.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baldan, P., Bruni, A., Corradini, A., König, B., Rodríguez, C., Schwoon, S.: Efficient unfolding of contextual Petri nets. Theor. Comput. Sci. 449, 2–22 (2012). https://doi.org/10.1016/j.tcs.2012.04.046
Baldan, P., Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Löwe, M.: Concurrent semantics of algebraic graph transformation. In: Handbook of Graph Grammars and Computing by Graph Transformation, vol. 3, pp. 107–187. World Scientific (1999). https://doi.org/10.1142/9789812814951_0003
Bunke, H.: Programmed graph grammars. In: Claus, V., Ehrig, H., Rozenberg, G. (eds.) Graph Grammars 1978. LNCS, vol. 73, pp. 155–166. Springer, Heidelberg (1979). https://doi.org/10.1007/BFb0025718
Corradini, A., Montanari, U., Rossi, F.: Graph processes. Fundam. Inform. 26(3/4), 241–265 (1996). https://doi.org/10.3233/FI-1996-263402
Corradini, A., et al.: On the essence of parallel independence for the double-pushout and sesqui-pushout approaches. In: Heckel, R., Taentzer, G. (eds.) Graph Transformation, Specifications, and Nets. LNCS, vol. 10800, pp. 1–18. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75396-6_1
Dassow, J., Păun, G., Salomaa, A.: Grammars with controlled derivations. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 2, pp. 101–154. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-662-07675-0_3
Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-31188-2
Ehrig, H., König, B.: Deriving bisimulation congruences in the DPO approach to graph rewriting. In: Walukiewicz, I. (ed.) FoSSaCS 2004. LNCS, vol. 2987, pp. 151–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24727-2_12
Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story diagrams: a new graph rewrite language based on the unified modeling language and Java. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764, pp. 296–309. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-540-46464-8_21
Habel, A., Plump, D.: Computational completeness of programming languages based on graph transformation. In: Honsell, F., Miculan, M. (eds.) FoSSaCS 2001. LNCS, vol. 2030, pp. 230–245. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45315-6_15
Kluge, R., Stein, M., Varró, G., Schürr, A., Hollick, M., Mühlhäuser, M.: A systematic approach to constructing families of incremental topology control algorithms using graph transformation. Softw. Syst. Model. 38, 47–83 (2017). https://doi.org/10.1016/j.jvlc.2016.10.003
Leblebici, E., Anjorin, A., Schürr, A.: Developing eMoflon with eMoflon. In: Di Ruscio, D., Varró, D. (eds.) ICMT 2014. LNCS, vol. 8568, pp. 138–145. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08789-4_10
Plump, D., Steinert, S.: The semantics of graph programs. In: RULE. EPTCS, vol. 21 (2009). https://doi.org/10.4204/EPTCS.21.3
Schürr, A.: Logic-based programmed structure rewriting systems. Fundam. Inform. 26(3, 4), 363–385 (1996). https://doi.org/10.3233/FI-1996-263407
Schürr, A., Winter, A.J., Zündorf, A.: The PROGRES-approach: language and environment. In: Handbook of Graph Grammars and Computing by Graph Transformation, vol. 2, pp. 487–550. World Scientific (1999). https://doi.org/10.1142/9789812815149_0013
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Kulcsár, G., Corradini, A., Lochau, M. (2018). Equivalence and Independence in Controlled Graph-Rewriting Processes. In: Lambers, L., Weber, J. (eds) Graph Transformation. ICGT 2018. Lecture Notes in Computer Science(), vol 10887. Springer, Cham. https://doi.org/10.1007/978-3-319-92991-0_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-92991-0_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-92990-3
Online ISBN: 978-3-319-92991-0
eBook Packages: Computer ScienceComputer Science (R0)