Skip to main content

Feature Selection for Big Visual Data: Overview and Challenges

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10882))

Included in the following conference series:

  • 5244 Accesses

Abstract

The unprecedented amount of visual data that is available nowadays has created new research opportunities and challenges in the areas of computer vision and machine learning. When dealing with large scale datasets, with a huge number of samples and features, the use of feature selection plays an important role for dimensionality reduction whilst allowing model interpretation, data understanding and knowledge extraction. This manuscript is focused on feature selection as applied to big visual data, including both traditional and deep approaches, and tries to give an overview of the cutting-edge techniques to deal with large-scale vision problems and identify technical challenges in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

  2. Bolón-Canedo, V., Remeseiro, B., Sánchez-Maroño, N., Alonso-Betanzos, A.: mC-ReliefF: an extension of ReliefF for cost-based feature selection. In: International Conference on Agents and Artificial Intelligence, vol. 1, pp. 42–51 (2014)

    Google Scholar 

  3. Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A.: Feature Selection for High-Dimensional Data. AIFTA. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21858-8

    Book  Google Scholar 

  4. Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A.: Recent advances and emerging challenges of feature selection in the context of big data. Knowl. Based Syst. 86, 33–45 (2015)

    Article  Google Scholar 

  5. Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A., Benítez, J.M., Herrera, F.: A review of microarray datasets and applied feature selection methods. Inf. Sci. 282, 111–135 (2014)

    Article  Google Scholar 

  6. Borji, A., Cheng, M.M., Jiang, H., Li, J.: Salient object detection: a benchmark. IEEE Trans. Image Process. 24(12), 5706–5722 (2015)

    Article  MathSciNet  Google Scholar 

  7. Cao, Z., Principe, J.C., Ouyang, B.: Group feature selection in image classification with multiple kernel learning. In: International Joint Conference on Neural Networks, pp. 1–5 (2015)

    Google Scholar 

  8. Chen, X.W., Lin, X.: Big data deep learning: challenges and perspectives. IEEE Access 2, 514–525 (2014)

    Article  Google Scholar 

  9. Cheng, M.M., Mitra, N.J., Huang, X., Torr, P.H., Hu, S.M.: Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 569–582 (2015)

    Article  Google Scholar 

  10. Fang, Z., Hwang, J.N., Huo, X., Lee, H.J., Denzler, J.: Emergent Techniques and Applications for Big Visual Data. Int. J. Digit. Multimed. Broadcast. 2017, 2 (2017). Article ID 6468502

    Google Scholar 

  11. Guo, G., Fu, Y., Dyer, C.R., Huang, T.S.: Image-based human age estimation by manifold learning and locally adjusted robust regression. IEEE Trans. Image Process. 17(7), 1178–1188 (2008)

    Article  MathSciNet  Google Scholar 

  12. Guyon, I.: Feature Extraction: Foundations and Applications, vol. 207. Springer, Heidelberg (2006)

    Google Scholar 

  13. Hong, S., You, T., Kwak, S., Han, B.: Online tracking by learning discriminative saliency map with convolutional neural network. In: International Conference on Machine Learning, pp. 597–606 (2015)

    Google Scholar 

  14. Hu, W., Tan, T., Wang, L., Maybank, S.: A survey on visual surveillance of object motion and behaviors. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 34(3), 334–352 (2004)

    Article  Google Scholar 

  15. Jia, Y., Huang, C., Darrell, T.: Beyond spatial pyramids: receptive field learning for pooled image features. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3370–3377 (2012)

    Google Scholar 

  16. Juan, L., Gwun, O.: A comparison of SIFT, PCA-SIFT and SURF. Int. J. Image Process. 3(4), 143–152 (2009)

    Google Scholar 

  17. Keim, D.A., Mansmann, F., Schneidewind, J., Ziegler, H.: Challenges in visual data analysis. In: International Conference on Information Visualization, pp. 9–16 (2006)

    Google Scholar 

  18. Lazar, C., Taminau, J., Meganck, S., Steenhoff, D., Coletta, A., Molter, C., de Schaetzen, V., Duque, R., Bersini, H., Nowe, A.: A survey on filter techniques for feature selection in gene expression microarray analysis. IEEE/ACM Trans. Comput. Biol. Bioinf. 9(4), 1106–1119 (2012)

    Article  Google Scholar 

  19. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  20. Li, G., Yu, Y.: Visual saliency based on multiscale deep features. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5455–5463 (2015)

    Google Scholar 

  21. Li, G., Yu, Y.: Deep contrast learning for salient object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 478–487 (2016)

    Google Scholar 

  22. Li, G., Yu, Y.: Visual saliency detection based on multiscale deep CNN features. IEEE Trans. Image Process. 25(11), 5012–5024 (2016)

    Article  MathSciNet  Google Scholar 

  23. Li, X., Zhao, L., Wei, L., Yang, M.H., Wu, F., Zhuang, Y., Ling, H., Wang, J.: DeepSaliency: Multi-task deep neural network model for salient object detection. IEEE Trans. Image Process. 25(8), 3919–3930 (2016)

    Article  MathSciNet  Google Scholar 

  24. Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  25. Malamas, E.N., Petrakis, E.G., Zervakis, M., Petit, L., Legat, J.D.: A survey on industrial vision systems, applications and tools. Image Vis. Comput. 21(2), 171–188 (2003)

    Article  Google Scholar 

  26. Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 427–436 (2015)

    Google Scholar 

  27. Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Is object localization for free?-weakly-supervised learning with convolutional neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 685–694 (2015)

    Google Scholar 

  28. Saeys, Y., Inza, I., Larrañaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23(19), 2507–2517 (2007)

    Article  Google Scholar 

  29. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 618–626 (2017)

    Google Scholar 

  30. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034 (2013)

  31. Tan, M., Tsang, I.W., Wang, L.: Towards ultrahigh dimensional feature selection for big data. J. Mach. Learn. Res. 15, 1371–1429 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Wei, Y., Liang, X., Chen, Y., Shen, X., Cheng, M.M., Feng, J., Zhao, Y., Yan, S.: STC: A simple to complex framework for weakly-supervised semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(11), 2314–2320 (2017)

    Article  Google Scholar 

  33. Weinberger, K.Q., Saul, L.K.: Unsupervised learning of image manifolds by semidefinite programming. Int. J. Comput. Vis. 70(1), 77–90 (2006)

    Article  Google Scholar 

  34. Zhao, L., Hu, Q., Wang, W.: Heterogeneous feature selection with multi-modal deep neural networks and sparse group LASSO. IEEE Trans. Multimed. 17(11), 1936–1948 (2015)

    Article  Google Scholar 

  35. Zhao, R., Ouyang, W., Li, H., Wang, X.: Saliency detection by multi-context deep learning. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1265–1274 (2015)

    Google Scholar 

  36. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)

    Google Scholar 

Download references

Acknowledgments

This research has been partially funded by the Spanish Ministerio de Economía y Competitividad and FEDER funds of the European Union (projects TIN2015-65069-C2-1-R and TIN2015-65069-C2-2-R); and by the Consellería de Industria of the Xunta de Galicia (project GRC2014/035). Brais Cancela acknowledges the support of the Xunta de Galicia under its postdoctoral program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz Remeseiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bolón-Canedo, V., Remeseiro, B., Cancela, B. (2018). Feature Selection for Big Visual Data: Overview and Challenges. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds) Image Analysis and Recognition. ICIAR 2018. Lecture Notes in Computer Science(), vol 10882. Springer, Cham. https://doi.org/10.1007/978-3-319-93000-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93000-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92999-6

  • Online ISBN: 978-3-319-93000-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics